building-automl-pipelines
关于
This skill enables Claude to automatically build AutoML pipelines using the automl-pipeline-builder plugin when users request automated machine learning workflows. It generates complete ML code with data validation, error handling, performance metrics, and documented artifacts. Use it for requests like "build automl pipeline" or "automate machine learning model building."
快速安装
Claude Code
推荐/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus-skillsgit clone https://github.com/jeremylongshore/claude-code-plugins-plus-skills.git ~/.claude/skills/building-automl-pipelines在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
Overview
This skill automates the creation of machine learning pipelines using the automl-pipeline-builder plugin. It simplifies the process of building, training, and evaluating machine learning models by automating feature engineering, model selection, and hyperparameter tuning.
How It Works
- Analyze Requirements: The skill analyzes the user's request and identifies the specific machine learning task and data requirements.
- Generate Code: Based on the analysis, the skill generates the necessary code to build an AutoML pipeline using appropriate libraries.
- Implement Best Practices: The skill incorporates data validation, error handling, and performance optimization techniques into the generated code.
- Provide Insights: After execution, the skill provides performance metrics, insights, and documentation for the created pipeline.
When to Use This Skill
This skill activates when you need to:
- Build an automated machine learning pipeline.
- Automate the process of model selection and hyperparameter tuning.
- Generate code for a complete AutoML workflow.
Examples
Example 1: Creating a Classification Pipeline
User request: "Build an AutoML pipeline for classifying customer churn."
The skill will:
- Generate code to load and preprocess customer data.
- Create an AutoML pipeline that automatically selects and tunes a classification model.
Example 2: Optimizing a Regression Model
User request: "Create an automated ml pipeline to predict house prices."
The skill will:
- Generate code to build a regression model using AutoML techniques.
- Automatically select the best performing model and provide performance metrics.
Best Practices
- Data Preparation: Ensure data is clean, properly formatted, and relevant to the machine learning task.
- Performance Monitoring: Continuously monitor the performance of the AutoML pipeline and retrain the model as needed.
- Error Handling: Implement robust error handling to gracefully handle unexpected issues during pipeline execution.
Integration
This skill can be integrated with other data processing and visualization plugins to create end-to-end machine learning workflows. It can also be used in conjunction with deployment plugins to automate the deployment of trained models.
GitHub 仓库
相关推荐技能
content-collections
元Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。
creating-opencode-plugins
元该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
