MCP HubMCP Hub
返回技能列表

building-classification-models

jeremylongshore
更新于 Today
187 次查看
1,053
135
1,053
在 GitHub 上查看
aiautomationdesigndata

关于

This skill enables Claude to build and evaluate classification models from datasets using the classification-model-builder plugin. It automates model creation, optimization, and performance reporting for supervised learning tasks. Use it when developers need to train classifiers or handle labeled data with built-in data validation and best practices.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus-skills
Git 克隆备选方式
git clone https://github.com/jeremylongshore/claude-code-plugins-plus-skills.git ~/.claude/skills/building-classification-models

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Overview

This skill empowers Claude to efficiently build and deploy classification models. It automates the process of model selection, training, and evaluation, providing users with a robust and reliable classification solution. The skill also provides insights into model performance and suggests potential improvements.

How It Works

  1. Context Analysis: Claude analyzes the user's request, identifying the dataset, target variable, and any specific requirements for the classification model.
  2. Model Generation: The skill utilizes the classification-model-builder plugin to generate code for training a classification model based on the identified dataset and requirements. This includes data preprocessing, feature selection, model selection, and hyperparameter tuning.
  3. Evaluation and Reporting: The generated model is trained and evaluated using appropriate metrics (e.g., accuracy, precision, recall, F1-score). Performance metrics and insights are then provided to the user.

When to Use This Skill

This skill activates when you need to:

  • Build a classification model from a given dataset.
  • Train a classifier to predict categorical outcomes.
  • Evaluate the performance of a classification model.

Examples

Example 1: Building a Spam Classifier

User request: "Build a classifier to detect spam emails using this dataset."

The skill will:

  1. Analyze the provided email dataset to identify features and the target variable (spam/not spam).
  2. Generate Python code using the classification-model-builder plugin to train a spam classification model, including data cleaning, feature extraction, and model selection.

Example 2: Predicting Customer Churn

User request: "Create a classification model to predict customer churn using customer data."

The skill will:

  1. Analyze the customer data to identify relevant features and the churn status.
  2. Generate code to build a classification model for churn prediction, including data validation, model training, and performance reporting.

Best Practices

  • Data Quality: Ensure the input data is clean and preprocessed before training the model.
  • Model Selection: Choose the appropriate classification algorithm based on the characteristics of the data and the specific requirements of the task.
  • Hyperparameter Tuning: Optimize the model's hyperparameters to achieve the best possible performance.

Integration

This skill integrates with the classification-model-builder plugin to automate the model building process. It can also be used in conjunction with other plugins for data analysis and visualization.

GitHub 仓库

jeremylongshore/claude-code-plugins-plus-skills
路径: backups/skill-structure-cleanup-20251108-073936/plugins/ai-ml/classification-model-builder/skills/classification-model-builder
aiautomationclaude-codedevopsmarketplacemcp

相关推荐技能

content-collections

Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。

查看技能

creating-opencode-plugins

该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能