MCP HubMCP Hub
返回技能列表

validating-api-responses

jeremylongshore
更新于 Today
71 次查看
712
74
712
在 GitHub 上查看
开发aiapidata

关于

This skill validates API responses against schemas to ensure contract compliance and data integrity. It's triggered by phrases like "validate responses" or "check API responses" and uses tools like Read, Write, and Bash to verify response correctness and format. Developers should use it when ensuring API response accuracy during development or testing.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git 克隆备选方式
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/validating-api-responses

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Prerequisites

Before using this skill, ensure you have:

  • API design specifications or requirements documented
  • Development environment with necessary frameworks installed
  • Database or backend services accessible for integration
  • Authentication and authorization strategies defined
  • Testing tools and environments configured

Instructions

Step 1: Design API Structure

Plan the API architecture and endpoints:

  1. Use Read tool to examine existing API specifications from {baseDir}/api-specs/
  2. Define resource models, endpoints, and HTTP methods
  3. Document request/response schemas and data types
  4. Identify authentication and authorization requirements
  5. Plan error handling and validation strategies

Step 2: Implement API Components

Build the API implementation:

  1. Generate boilerplate code using Bash(api:validate-*) with framework scaffolding
  2. Implement endpoint handlers with business logic
  3. Add input validation and schema enforcement
  4. Integrate authentication and authorization middleware
  5. Configure database connections and ORM models

Step 3: Add API Features

Enhance with production-ready capabilities:

  • Implement rate limiting and throttling policies
  • Add request/response logging with correlation IDs
  • Configure error handling with standardized responses
  • Set up health check and monitoring endpoints
  • Enable CORS and security headers

Step 4: Test and Document

Validate API functionality:

  1. Write integration tests covering all endpoints
  2. Generate OpenAPI/Swagger documentation automatically
  3. Create usage examples and authentication guides
  4. Test with various HTTP clients (curl, Postman, REST Client)
  5. Perform load testing to validate performance targets

Output

The skill generates production-ready API artifacts:

API Implementation

Generated code structure:

  • {baseDir}/src/routes/ - Endpoint route definitions
  • {baseDir}/src/controllers/ - Business logic handlers
  • {baseDir}/src/models/ - Data models and schemas
  • {baseDir}/src/middleware/ - Authentication, validation, logging
  • {baseDir}/src/config/ - Configuration and environment variables

API Documentation

Comprehensive API docs including:

  • OpenAPI 3.0 specification with complete endpoint definitions
  • Authentication and authorization flow diagrams
  • Request/response examples for all endpoints
  • Error code reference with troubleshooting guidance
  • SDK generation instructions for multiple languages

Testing Artifacts

Complete test suite:

  • Unit tests for individual controller functions
  • Integration tests for end-to-end API workflows
  • Load test scripts for performance validation
  • Mock data generators for realistic testing
  • Postman/Insomnia collection for manual testing

Configuration Files

Production-ready configs:

  • Environment variable templates (.env.example)
  • Database migration scripts
  • Docker Compose for local development
  • CI/CD pipeline configuration
  • Monitoring and alerting setup

Error Handling

Common issues and solutions:

Schema Validation Failures

  • Error: Request body does not match expected schema
  • Solution: Add detailed validation error messages; provide schema documentation; implement request sanitization

Authentication Errors

  • Error: Invalid or expired authentication tokens
  • Solution: Implement proper token refresh flows; add clear error messages indicating auth failure reason; document token lifecycle

Rate Limit Exceeded

  • Error: API consumer exceeded allowed request rate
  • Solution: Return 429 status with Retry-After header; implement exponential backoff guidance; provide rate limit info in response headers

Database Connection Issues

  • Error: Cannot connect to database or query timeout
  • Solution: Implement connection pooling; add health checks; configure proper timeouts; implement circuit breaker pattern for resilience

Resources

API Development Frameworks

  • Express.js and Fastify for Node.js APIs
  • Flask and FastAPI for Python APIs
  • Spring Boot for Java APIs
  • Gin and Echo for Go APIs

API Standards and Best Practices

  • OpenAPI Specification 3.0+ for API documentation
  • JSON:API specification for RESTful API conventions
  • OAuth 2.0 and OpenID Connect for authentication
  • HTTP/2 and HTTP/3 for performance optimization

Testing and Monitoring Tools

  • Postman and Insomnia for API testing
  • Swagger UI for interactive API documentation
  • Artillery and k6 for load testing
  • Prometheus and Grafana for monitoring

Security Best Practices

  • OWASP API Security Top 10 guidelines
  • JWT best practices for token-based auth
  • Rate limiting strategies to prevent abuse
  • Input validation and sanitization techniques

GitHub 仓库

jeremylongshore/claude-code-plugins-plus
路径: plugins/api-development/api-response-validator/skills/api-response-validator
aiautomationclaude-codedevopsmarketplacemcp

相关推荐技能

content-collections

Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。

查看技能

creating-opencode-plugins

该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能