MCP HubMCP Hub
返回技能列表

validating-ai-ethics-and-fairness

jeremylongshore
更新于 Today
51 次查看
409
51
409
在 GitHub 上查看
aidata

关于

This skill enables Claude to automatically validate AI/ML models and datasets for ethical concerns and potential biases. It triggers when users request fairness assessments, bias detection, or ethics reviews using related keywords. The skill analyzes systems and provides mitigation recommendations to support responsible AI development.

技能文档

Overview

This skill empowers Claude to automatically assess and improve the ethical considerations and fairness of AI and machine learning projects. It leverages the ai-ethics-validator plugin to identify potential biases, evaluate fairness metrics, and suggest mitigation strategies, promoting responsible AI development.

How It Works

  1. Analysis Initiation: The skill is triggered by user requests related to AI ethics, fairness, or bias detection.
  2. Ethical Validation: The ai-ethics-validator plugin analyzes the provided AI model, dataset, or code for potential ethical concerns and biases.
  3. Report Generation: The plugin generates a detailed report outlining identified issues, fairness metrics, and recommended mitigation strategies.

When to Use This Skill

This skill activates when you need to:

  • Evaluate the fairness of an AI model across different demographic groups.
  • Detect and mitigate bias in a training dataset.
  • Assess the ethical implications of an AI-powered application.

Examples

Example 1: Fairness Evaluation

User request: "Evaluate the fairness of this loan application model."

The skill will:

  1. Invoke the ai-ethics-validator plugin to analyze the model's predictions across different demographic groups.
  2. Generate a report highlighting any disparities in approval rates or loan terms.

Example 2: Bias Detection

User request: "Detect bias in this image recognition dataset."

The skill will:

  1. Utilize the ai-ethics-validator plugin to analyze the dataset for representation imbalances across different categories.
  2. Generate a report identifying potential biases and suggesting data augmentation or re-sampling strategies.

Best Practices

  • Data Integrity: Ensure the input data is accurate, representative, and properly preprocessed.
  • Metric Selection: Choose appropriate fairness metrics based on the specific application and potential impact.
  • Transparency: Document the ethical considerations and mitigation strategies implemented throughout the AI development process.

Integration

This skill can be integrated with other plugins for data analysis, model training, and deployment to ensure ethical considerations are incorporated throughout the entire AI lifecycle. For example, it can be combined with a data visualization plugin to explore the distribution of data across different demographic groups.

快速安装

/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus/tree/main/ai-ethics-validator

在 Claude Code 中复制并粘贴此命令以安装该技能

GitHub 仓库

jeremylongshore/claude-code-plugins-plus
路径: plugins/ai-ml/ai-ethics-validator/skills/ai-ethics-validator
aiautomationclaude-codedevopsmarketplacemcp

相关推荐技能

llamaguard

其他

LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

langchain

LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能