MCP HubMCP Hub
返回技能列表

creating-apm-dashboards

jeremylongshore
更新于 Today
56 次查看
712
74
712
在 GitHub 上查看
aidesigndata

关于

This skill helps developers create APM dashboards for monitoring application health and performance. It triggers when a user requests a new or expanded monitoring solution, assisting with defining key metrics and visualizations. It supports platforms like Grafana and Datadog, covering golden signals, resource utilization, error tracking, and business metrics.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git 克隆备选方式
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/creating-apm-dashboards

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Overview

This skill automates the creation of Application Performance Monitoring (APM) dashboards, providing a structured approach to visualizing critical application metrics. By defining key performance indicators and generating dashboard configurations, this skill simplifies the process of monitoring application health and performance.

How It Works

  1. Identify Requirements: Determine the specific metrics and visualizations needed for the APM dashboard based on the user's request.
  2. Define Dashboard Components: Select relevant components such as golden signals (latency, traffic, errors, saturation), request metrics, resource utilization, database metrics, cache metrics, business metrics, and error tracking.
  3. Generate Configuration: Create the dashboard configuration file based on the selected components and user preferences.
  4. Deploy Dashboard: Deploy the generated configuration to the target monitoring platform (e.g., Grafana, Datadog).

When to Use This Skill

This skill activates when you need to:

  • Create a new APM dashboard for an application.
  • Define key metrics and visualizations for monitoring application performance.
  • Generate dashboard configurations for Grafana, Datadog, or other monitoring platforms.

Examples

Example 1: Creating a Grafana Dashboard

User request: "Create a Grafana dashboard for monitoring my web application's performance."

The skill will:

  1. Identify the need for a Grafana dashboard focused on web application performance.
  2. Define dashboard components including request rate, response times, error rates, and resource utilization (CPU, memory).
  3. Generate a Grafana dashboard configuration file with pre-defined visualizations for these metrics.

Example 2: Setting up a Datadog Dashboard

User request: "Set up a Datadog dashboard to track the golden signals for my microservice."

The skill will:

  1. Identify the need for a Datadog dashboard focused on golden signals.
  2. Define dashboard components including latency, traffic, errors, and saturation metrics.
  3. Generate a Datadog dashboard configuration file with pre-defined visualizations for these metrics.

Best Practices

  • Specificity: Provide detailed information about the application and metrics to be monitored.
  • Platform Selection: Clearly specify the target monitoring platform (Grafana, Datadog, etc.) to ensure compatibility.
  • Iteration: Review and refine the generated dashboard configuration to meet specific monitoring needs.

Integration

This skill can be integrated with other plugins that manage infrastructure or application deployment to automatically create APM dashboards as part of the deployment process. It can also work with alerting plugins to define alert rules based on the metrics displayed in the generated dashboards.

GitHub 仓库

jeremylongshore/claude-code-plugins-plus
路径: backups/skills-batch-20251204-000554/plugins/performance/apm-dashboard-creator/skills/apm-dashboard-creator
aiautomationclaude-codedevopsmarketplacemcp

相关推荐技能

content-collections

Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。

查看技能

creating-opencode-plugins

该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能