Swarm Orchestration
关于
Swarm Orchestration enables developers to coordinate multi-agent AI systems for parallel task execution using dynamic topologies like mesh or hierarchical structures. It's ideal for scaling complex workflows beyond single agents, featuring automatic task distribution, load balancing, and fault tolerance. Use this skill when building distributed AI systems that require intelligent coordination between specialized agents.
快速安装
Claude Code
推荐/plugin add https://github.com/proffesor-for-testing/agentic-qegit clone https://github.com/proffesor-for-testing/agentic-qe.git ~/.claude/skills/Swarm Orchestration在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
Swarm Orchestration
What This Skill Does
Orchestrates multi-agent swarms using agentic-flow's advanced coordination system. Supports mesh, hierarchical, and adaptive topologies with automatic task distribution, load balancing, and fault tolerance.
Prerequisites
- agentic-flow v1.5.11+
- Node.js 18+
- Understanding of distributed systems (helpful)
Quick Start
# Initialize swarm
npx agentic-flow hooks swarm-init --topology mesh --max-agents 5
# Spawn agents
npx agentic-flow hooks agent-spawn --type coder
npx agentic-flow hooks agent-spawn --type tester
npx agentic-flow hooks agent-spawn --type reviewer
# Orchestrate task
npx agentic-flow hooks task-orchestrate \
--task "Build REST API with tests" \
--mode parallel
Topology Patterns
1. Mesh (Peer-to-Peer)
// Equal peers, distributed decision-making
await swarm.init({
topology: 'mesh',
agents: ['coder', 'tester', 'reviewer'],
communication: 'broadcast'
});
2. Hierarchical (Queen-Worker)
// Centralized coordination, specialized workers
await swarm.init({
topology: 'hierarchical',
queen: 'architect',
workers: ['backend-dev', 'frontend-dev', 'db-designer']
});
3. Adaptive (Dynamic)
// Automatically switches topology based on task
await swarm.init({
topology: 'adaptive',
optimization: 'task-complexity'
});
Task Orchestration
Parallel Execution
// Execute tasks concurrently
const results = await swarm.execute({
tasks: [
{ agent: 'coder', task: 'Implement API endpoints' },
{ agent: 'frontend', task: 'Build UI components' },
{ agent: 'tester', task: 'Write test suite' }
],
mode: 'parallel',
timeout: 300000 // 5 minutes
});
Pipeline Execution
// Sequential pipeline with dependencies
await swarm.pipeline([
{ stage: 'design', agent: 'architect' },
{ stage: 'implement', agent: 'coder', after: 'design' },
{ stage: 'test', agent: 'tester', after: 'implement' },
{ stage: 'review', agent: 'reviewer', after: 'test' }
]);
Adaptive Execution
// Let swarm decide execution strategy
await swarm.autoOrchestrate({
goal: 'Build production-ready API',
constraints: {
maxTime: 3600,
maxAgents: 8,
quality: 'high'
}
});
Memory Coordination
// Share state across swarm
await swarm.memory.store('api-schema', {
endpoints: [...],
models: [...]
});
// Agents read shared memory
const schema = await swarm.memory.retrieve('api-schema');
Advanced Features
Load Balancing
// Automatic work distribution
await swarm.enableLoadBalancing({
strategy: 'dynamic',
metrics: ['cpu', 'memory', 'task-queue']
});
Fault Tolerance
// Handle agent failures
await swarm.setResiliency({
retry: { maxAttempts: 3, backoff: 'exponential' },
fallback: 'reassign-task'
});
Performance Monitoring
// Track swarm metrics
const metrics = await swarm.getMetrics();
// { throughput, latency, success_rate, agent_utilization }
Integration with Hooks
# Pre-task coordination
npx agentic-flow hooks pre-task --description "Build API"
# Post-task synchronization
npx agentic-flow hooks post-task --task-id "task-123"
# Session restore
npx agentic-flow hooks session-restore --session-id "swarm-001"
Best Practices
- Start small: Begin with 2-3 agents, scale up
- Use memory: Share context through swarm memory
- Monitor metrics: Track performance and bottlenecks
- Enable hooks: Automatic coordination and sync
- Set timeouts: Prevent hung tasks
Troubleshooting
Issue: Agents not coordinating
Solution: Verify memory access and enable hooks
Issue: Poor performance
Solution: Check topology (use adaptive) and enable load balancing
Learn More
- Swarm Guide: docs/swarm/orchestration.md
- Topology Patterns: docs/swarm/topologies.md
- Hooks Integration: docs/hooks/coordination.md
GitHub 仓库
相关推荐技能
content-collections
元Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。
creating-opencode-plugins
元该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
