MCP HubMCP Hub
返回技能列表

Generating Unit Tests

jeremylongshore
更新于 Yesterday
214 次查看
1,053
135
1,053
在 GitHub 上查看
aitestingautomationdesign

关于

This skill automatically generates comprehensive unit tests from source code when you request tests or use the "gut" shortcut. It supports multiple frameworks like Jest and pytest, intelligently detecting the appropriate one or using your specified choice. Use it to quickly create test cases covering key functionalities, edge cases, and error conditions.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus-skills
Git 克隆备选方式
git clone https://github.com/jeremylongshore/claude-code-plugins-plus-skills.git ~/.claude/skills/Generating Unit Tests

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Overview

This skill empowers Claude to rapidly create robust unit tests, saving developers time and ensuring code quality. It analyzes source code, identifies key functionalities, and generates test cases covering various scenarios, including happy paths, edge cases, and error conditions.

How It Works

  1. Analyze Source Code: The skill analyzes the provided source code file to understand its functionality, inputs, and outputs.
  2. Determine Testing Framework: The skill either detects the appropriate testing framework based on the file type and project structure or uses the framework specified by the user.
  3. Generate Test Cases: The skill generates comprehensive test cases, including tests for valid inputs, invalid inputs, boundary conditions, and error scenarios.
  4. Create Mock Dependencies: The skill automatically creates mocks and stubs for external dependencies to isolate the code being tested.
  5. Output Test File: The skill outputs a new test file containing the generated test cases, imports, setup, and assertions.

When to Use This Skill

This skill activates when you need to:

  • Create unit tests for a specific file or code snippet.
  • Generate test cases for a function, class, or module.
  • Quickly add test coverage to existing code.
  • Ensure code quality and prevent regressions.

Examples

Example 1: Generating Tests for a JavaScript Utility Function

User request: "generate tests src/utils/validator.js"

The skill will:

  1. Analyze the validator.js file to understand its functions and dependencies.
  2. Detect that the file is JavaScript and default to Jest.
  3. Generate a validator.test.js file with test cases covering various validation scenarios.

Example 2: Generating Tests for a Python API Endpoint using pytest

User request: "generate tests --framework pytest src/api/users.py"

The skill will:

  1. Analyze the users.py file to understand its API endpoints and dependencies.
  2. Use pytest as the testing framework, as specified by the user.
  3. Generate a test_users.py file with test cases covering various API scenarios, including successful requests, error handling, and authentication.

Best Practices

  • Framework Specification: Explicitly specify the testing framework when the default is not desired or ambiguous.
  • File Granularity: Generate tests for individual files or modules to maintain focus and testability.
  • Review and Refine: Always review and refine the generated tests to ensure they accurately reflect the desired behavior and coverage.

Integration

This skill can be used in conjunction with other code analysis and refactoring tools to improve code quality and maintainability. It also integrates with CI/CD pipelines to automatically run tests and prevent regressions.

GitHub 仓库

jeremylongshore/claude-code-plugins-plus-skills
路径: backups/plugin-enhancements/plugin-backups/unit-test-generator_20251019_155749/skills/skill-adapter
aiautomationclaude-codedevopsmarketplacemcp

相关推荐技能

content-collections

Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。

查看技能

creating-opencode-plugins

该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能