MCP HubMCP Hub
返回技能列表

monitoring-cpu-usage

jeremylongshore
更新于 Today
84 次查看
712
74
712
在 GitHub 上查看
aidesign

关于

This skill helps developers monitor and analyze CPU usage to identify performance bottlenecks like inefficient loops or regex patterns. Use it when optimizing CPU performance, analyzing load, or finding hotspots in your application. It provides actionable recommendations to improve algorithmic complexity and address CPU-intensive operations.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git 克隆备选方式
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/monitoring-cpu-usage

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Overview

This skill empowers Claude to analyze code for CPU-intensive operations, offering detailed optimization recommendations to improve processor utilization. By pinpointing areas of high CPU usage, it facilitates targeted improvements for enhanced application performance.

How It Works

  1. Initiate CPU Monitoring: Claude activates the cpu-usage-monitor plugin.
  2. Code Analysis: The plugin analyzes the codebase for computationally expensive operations, synchronous blocking calls, inefficient loops, and regex patterns.
  3. Optimization Recommendations: Claude provides a detailed report outlining areas for optimization, including suggestions for algorithmic improvements, asynchronous processing, and regex optimization.

When to Use This Skill

This skill activates when you need to:

  • Identify CPU bottlenecks in your application.
  • Optimize application performance by reducing CPU load.
  • Analyze code for computationally intensive operations.

Examples

Example 1: Identifying CPU Hotspots

User request: "Monitor CPU usage in my Python script and suggest optimizations."

The skill will:

  1. Analyze the provided Python script for CPU-intensive functions.
  2. Identify potential bottlenecks such as inefficient loops or complex regex patterns.
  3. Provide recommendations for optimizing the code, such as using more efficient algorithms or asynchronous operations.

Example 2: Analyzing Algorithmic Complexity

User request: "Analyze the CPU load of this Java code and identify areas with high algorithmic complexity."

The skill will:

  1. Analyze the provided Java code, focusing on algorithmic complexity (e.g., O(n^2) or worse).
  2. Pinpoint specific methods or sections of code with high complexity.
  3. Suggest alternative algorithms or data structures to improve performance.

Best Practices

  • Targeted Analysis: Focus the analysis on specific sections of code known to be CPU-intensive.
  • Asynchronous Operations: Consider using asynchronous operations to prevent blocking the main thread.
  • Regex Optimization: Carefully review and optimize regular expressions for performance.

Integration

This skill can be used in conjunction with other code analysis and refactoring tools to implement the suggested optimizations. It can also be integrated into CI/CD pipelines to automatically monitor CPU usage and identify performance regressions.

GitHub 仓库

jeremylongshore/claude-code-plugins-plus
路径: backups/skills-batch-20251204-000554/plugins/performance/cpu-usage-monitor/skills/cpu-usage-monitor
aiautomationclaude-codedevopsmarketplacemcp

相关推荐技能

content-collections

Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。

查看技能

creating-opencode-plugins

该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能