monitoring-cpu-usage
关于
This skill helps developers monitor and analyze CPU usage to identify performance bottlenecks like inefficient loops or regex patterns. Use it when optimizing CPU performance, analyzing load, or finding hotspots in your application. It provides actionable recommendations to improve algorithmic complexity and address CPU-intensive operations.
快速安装
Claude Code
推荐/plugin add https://github.com/jeremylongshore/claude-code-plugins-plusgit clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/monitoring-cpu-usage在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
Overview
This skill empowers Claude to analyze code for CPU-intensive operations, offering detailed optimization recommendations to improve processor utilization. By pinpointing areas of high CPU usage, it facilitates targeted improvements for enhanced application performance.
How It Works
- Initiate CPU Monitoring: Claude activates the
cpu-usage-monitorplugin. - Code Analysis: The plugin analyzes the codebase for computationally expensive operations, synchronous blocking calls, inefficient loops, and regex patterns.
- Optimization Recommendations: Claude provides a detailed report outlining areas for optimization, including suggestions for algorithmic improvements, asynchronous processing, and regex optimization.
When to Use This Skill
This skill activates when you need to:
- Identify CPU bottlenecks in your application.
- Optimize application performance by reducing CPU load.
- Analyze code for computationally intensive operations.
Examples
Example 1: Identifying CPU Hotspots
User request: "Monitor CPU usage in my Python script and suggest optimizations."
The skill will:
- Analyze the provided Python script for CPU-intensive functions.
- Identify potential bottlenecks such as inefficient loops or complex regex patterns.
- Provide recommendations for optimizing the code, such as using more efficient algorithms or asynchronous operations.
Example 2: Analyzing Algorithmic Complexity
User request: "Analyze the CPU load of this Java code and identify areas with high algorithmic complexity."
The skill will:
- Analyze the provided Java code, focusing on algorithmic complexity (e.g., O(n^2) or worse).
- Pinpoint specific methods or sections of code with high complexity.
- Suggest alternative algorithms or data structures to improve performance.
Best Practices
- Targeted Analysis: Focus the analysis on specific sections of code known to be CPU-intensive.
- Asynchronous Operations: Consider using asynchronous operations to prevent blocking the main thread.
- Regex Optimization: Carefully review and optimize regular expressions for performance.
Integration
This skill can be used in conjunction with other code analysis and refactoring tools to implement the suggested optimizations. It can also be integrated into CI/CD pipelines to automatically monitor CPU usage and identify performance regressions.
GitHub 仓库
相关推荐技能
content-collections
元Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。
creating-opencode-plugins
元该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
