MCP HubMCP Hub
返回技能列表

testing-strategy-builder

ArieGoldkin
更新于 Today
124 次查看
5
5
在 GitHub 上查看
testingquality-assurancetest-strategyautomationcoverage

关于

This skill helps developers create comprehensive testing strategies for applications. It provides templates, coverage targets, and structured guidance for unit, integration, end-to-end, and performance testing. Use it when planning a new project, improving existing test coverage, or establishing quality gates.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/ArieGoldkin/ai-agent-hub
Git 克隆备选方式
git clone https://github.com/ArieGoldkin/ai-agent-hub.git ~/.claude/skills/testing-strategy-builder

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Testing Strategy Builder

Overview

This skill provides comprehensive guidance for building effective testing strategies that ensure software quality, reliability, and maintainability. Whether starting from scratch or improving existing test coverage, this framework helps teams design robust testing approaches.

When to use this skill:

  • Planning testing strategy for new projects or features
  • Improving test coverage in existing codebases
  • Establishing quality gates and coverage targets
  • Designing test automation architecture
  • Creating test plans and test cases
  • Choosing appropriate testing tools and frameworks
  • Implementing continuous testing in CI/CD pipelines

Bundled Resources:

  • references/code-examples.md - Detailed testing code examples
  • templates/test-plan-template.md - Comprehensive test plan template
  • templates/test-case-template.md - Test case documentation template
  • checklists/test-coverage-checklist.md - Coverage verification checklist

Required Tools

This skill references the following testing tools. Not all are required - the skill will recommend appropriate tools based on your project.

JavaScript/TypeScript Testing

  • Jest: Most popular testing framework

    • Install: npm install --save-dev jest @types/jest
    • Config: npx jest --init
  • Vitest: Vite-native testing framework

    • Install: npm install --save-dev vitest
    • Config: Add to vite.config.ts
  • Playwright: End-to-end testing

    • Install: npm install --save-dev @playwright/test
    • Setup: npx playwright install
  • k6: Performance testing

    • Install (macOS): brew install k6
    • Install (Linux): Download from k6.io
    • Command: k6 run script.js

Python Testing

  • pytest: Standard Python testing framework

    • Install: pip install pytest
    • Command: pytest
  • pytest-cov: Coverage reporting

    • Install: pip install pytest-cov
    • Command: pytest --cov=.
  • Locust: Performance testing

    • Install: pip install locust
    • Command: locust -f locustfile.py

Coverage Tools

  • c8: JavaScript/TypeScript coverage

    • Install: npm install --save-dev c8
    • Command: c8 npm test
  • Istanbul/nyc: Alternative JS coverage

    • Install: npm install --save-dev nyc
    • Command: nyc npm test

Installation Verification

# JavaScript/TypeScript
jest --version
vitest --version
playwright --version
k6 version

# Python
pytest --version
locust --version

# Coverage
c8 --version
nyc --version

Note: The skill will guide you to select tools based on your project framework (React, Vue, FastAPI, Django, etc.) and testing needs.

Testing Philosophy

The Testing Trophy 🏆

Modern testing follows the "Testing Trophy" model (evolved from the testing pyramid):

         🏆
       /    \
      /  E2E  \         ← Few (critical user journeys)
     /----------\
    / Integration\      ← Many (component interactions)
   /--------------\
  /     Unit       \    ← Most (business logic)
 /------------------\
/  Static Analysis   \  ← Foundation (linting, type checking)

Principles:

  1. Static Analysis: Catch syntax errors, type issues, and common bugs before runtime
  2. Unit Tests: Test individual functions and components in isolation
  3. Integration Tests: Test how components work together
  4. E2E Tests: Validate critical user workflows end-to-end

Balance: 70% integration, 20% unit, 10% E2E (adjust based on context)


Testing Strategy Framework

1. Coverage Targets

Recommended Targets:

  • Overall Code Coverage: 80% minimum
  • Critical Paths: 95-100% (payment, auth, data mutations)
  • New Features: 100% coverage requirement
  • Business Logic: 90%+ coverage
  • UI Components: 70%+ coverage

Coverage Types:

  • Line Coverage: Percentage of code lines executed
  • Branch Coverage: Percentage of decision branches taken
  • Function Coverage: Percentage of functions called
  • Statement Coverage: Percentage of statements executed

Important: Coverage is a metric, not a goal. 100% coverage ≠ bug-free code.

2. Test Classification

Static Analysis

Purpose: Catch errors before runtime Tools: ESLint, Prettier, TypeScript, Pylint, mypy, Ruff When to run: Pre-commit hooks, CI pipeline

Unit Tests

Purpose: Test isolated business logic Tools: Jest, Vitest, pytest, JUnit Characteristics:

  • Fast execution (< 100ms per test)
  • No external dependencies (database, API, filesystem)
  • Deterministic (same input = same output)
  • Test single responsibility

Coverage Target: 90%+ for business logic

See references/code-examples.md for detailed unit test examples.

Integration Tests

Purpose: Test component interactions Tools: Testing Library, Supertest, pytest with fixtures Characteristics:

  • Test multiple units working together
  • May use test databases or mocked external services
  • Moderate execution time (< 1s per test)
  • Focus on interfaces and contracts

Coverage Target: 70%+ for API endpoints and component interactions

See references/code-examples.md for API integration test examples.

End-to-End (E2E) Tests

Purpose: Validate critical user journeys Tools: Playwright, Cypress, Selenium Characteristics:

  • Test entire application flow (frontend + backend + database)
  • Slow execution (5-30s per test)
  • Run against production-like environment
  • Focus on business-critical paths

Coverage Target: 5-10 critical user journeys

See references/code-examples.md for complete E2E test examples.

Performance Tests

Purpose: Validate system performance under load Tools: k6, Artillery, JMeter, Locust Types:

  • Load Testing: System behavior under expected load
  • Stress Testing: Breaking point identification
  • Spike Testing: Sudden traffic surge handling
  • Soak Testing: Sustained load over time (memory leaks)

Coverage Target: Test all performance-critical endpoints

See references/code-examples.md for k6 load test examples.


Test Planning

1. Risk-Based Testing

Prioritize testing based on risk assessment:

High Risk (100% coverage required):

  • Payment processing
  • Authentication and authorization
  • Data mutations (create, update, delete)
  • Security-critical operations
  • Compliance-related features

Medium Risk (80% coverage):

  • Business logic
  • Data transformations
  • API integrations
  • Email/notification systems

Low Risk (50% coverage):

  • UI styling
  • Static content
  • Read-only operations
  • Non-critical features

2. Test Case Design

Given-When-Then Pattern:

Given [initial context]
When [action occurs]
Then [expected outcome]

This pattern keeps tests clear and focused. See references/code-examples.md for implementation examples.

3. Test Data Management

Strategies:

  • Fixtures: Pre-defined test data in JSON/YAML files
  • Factories: Generate test data programmatically
  • Seeders: Populate test database with known data
  • Faker Libraries: Generate realistic random data

See references/code-examples.md for test factory and fixture examples.


Testing Patterns and Best Practices

1. AAA Pattern (Arrange-Act-Assert)

Structure tests in three clear phases:

  • Arrange: Set up test data and context
  • Act: Perform the action being tested
  • Assert: Verify expected outcomes

See references/code-examples.md for detailed AAA pattern examples.

2. Test Isolation

Each test should be independent:

  • Use fresh test database for each test
  • Clean up resources after each test
  • Tests don't depend on execution order

See references/code-examples.md for test isolation patterns.

3. Mocking vs Real Dependencies

When to Mock:

  • External APIs (payment gateways, third-party services)
  • Slow operations (file I/O, network calls)
  • Non-deterministic behavior (current time, random values)
  • Hard-to-test scenarios (error conditions, edge cases)

When to Use Real Dependencies:

  • Fast, deterministic operations
  • Critical business logic
  • Database operations (use test database)
  • Internal service interactions

See references/code-examples.md for mocking examples.

4. Snapshot Testing

Use for: UI components, API responses, generated code

Warning: Snapshots can become brittle. Use for stable components, not rapidly changing UI.

5. Parameterized Tests

Test multiple scenarios with same logic using data tables.

See references/code-examples.md for parameterized test patterns.


Continuous Testing

1. CI/CD Integration

Pipeline Stages:

# Example: GitHub Actions
name: Test Pipeline

on: [push, pull_request]

jobs:
  test:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v3
      - name: Install dependencies
        run: npm ci
      - name: Lint
        run: npm run lint
      - name: Type check
        run: npm run typecheck
      - name: Unit & Integration Tests
        run: npm test -- --coverage
      - name: Upload coverage
        uses: codecov/codecov-action@v3
      - name: E2E Tests
        run: npm run test:e2e
      - name: Performance Tests (on main branch)
        if: github.ref == 'refs/heads/main'
        run: npm run test:performance

2. Quality Gates

Block merges/deployments if:

  • Code coverage drops below threshold (e.g., 80%)
  • Any tests fail
  • Linting errors exist
  • Performance regression detected (> 10% slower)
  • Security vulnerabilities found

3. Test Execution Strategy

On Every Commit:

  • Static analysis (lint, type check)
  • Unit tests
  • Fast integration tests (< 5 min total)

On Pull Request:

  • All tests (unit + integration + E2E)
  • Coverage report
  • Performance benchmarks

On Deploy to Staging:

  • Full E2E suite
  • Load testing
  • Security scans

On Deploy to Production:

  • Smoke tests (critical paths only)
  • Health checks
  • Canary deployments with monitoring

Testing Tools Recommendations

JavaScript/TypeScript

CategoryToolUse Case
Unit/IntegrationVitestFast, Vite-native, modern
Unit/IntegrationJestMature, extensive ecosystem
E2EPlaywrightCross-browser, reliable, fast
E2ECypressDeveloper-friendly, visual debugging
Component TestingTesting LibraryUser-centric, framework-agnostic
API TestingSupertestHTTP assertions, Express integration
Performancek6Load testing, scriptable

Python

CategoryToolUse Case
Unit/IntegrationpytestPowerful, extensible, fixtures
API Testinghttpx + pytestAsync support, modern
E2EPlaywright (Python)Browser automation
PerformanceLocustLoad testing, Python-based
Mockingunittest.mockStandard library, reliable

Common Testing Anti-Patterns

Testing Implementation Details

// Bad: Testing internal state
expect(component.state.isLoading).toBe(false);

// Good: Testing user-visible behavior
expect(screen.queryByText('Loading...')).not.toBeInTheDocument();

Tests Too Coupled to Code

// Bad: Test breaks when implementation changes
expect(userService.save).toHaveBeenCalledTimes(1);

// Good: Test behavior, not implementation
const user = await db.users.findOne({ email: '[email protected]' });
expect(user).toBeTruthy();

Flaky Tests

// Bad: Non-deterministic timeout
await waitFor(() => {
  expect(screen.getByText('Success')).toBeInTheDocument();
}, { timeout: 1000 }); // Might fail on slow CI

// Good: Use explicit waits with longer timeout
await screen.findByText('Success', {}, { timeout: 5000 });

Giant Test Cases

// Bad: One test does too much
test('user workflow', async () => {
  // 100 lines testing signup, login, profile update, logout...
});

// Good: Focused tests
test('user can sign up', async () => { /* ... */ });
test('user can login', async () => { /* ... */ });
test('user can update profile', async () => { /* ... */ });

Integration with Agents

Code Quality Reviewer

  • Reviews test coverage reports
  • Suggests missing test cases
  • Validates test quality and structure
  • Ensures tests follow patterns from this skill

Backend System Architect

  • Uses test strategy templates when designing services
  • Ensures APIs are testable (dependency injection, clear interfaces)
  • Plans integration test architecture

Frontend UI Developer

  • Applies component testing patterns
  • Uses Testing Library best practices
  • Implements E2E tests for user flows

AI/ML Engineer

  • Adapts testing patterns for ML models (data validation, model performance tests)
  • Uses performance testing for inference endpoints

Quick Start Checklist

When starting a new project or feature:

  • Define coverage targets (overall, critical paths, new code)
  • Choose testing framework (Jest/Vitest, Playwright, etc.)
  • Set up test infrastructure (test database, fixtures, factories)
  • Create test plan (see templates/test-plan-template.md)
  • Implement static analysis (ESLint, TypeScript)
  • Write unit tests for business logic (80%+ coverage)
  • Write integration tests for API endpoints (70%+ coverage)
  • Write E2E tests for critical user journeys (5-10 flows)
  • Configure CI/CD pipeline with quality gates
  • Set up coverage reporting (Codecov, Coveralls)
  • Document testing conventions in project README

For detailed code examples: See references/code-examples.md


Skill Version: 1.0.0 Last Updated: 2025-10-31 Maintained by: AI Agent Hub Team

GitHub 仓库

ArieGoldkin/ai-agent-hub
路径: skills/testing-strategy-builder

相关推荐技能

content-collections

Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能

Algorithmic Art Generation

这个Claude Skill帮助开发者使用p5.js创建算法艺术,特别适用于生成式艺术和交互式可视化项目。它支持种子随机性、流场和粒子系统等关键技术,确保艺术作品的重复性和独特性。当讨论生成艺术、算法艺术或计算美学时,该技能会自动激活,指导开发者完成从概念设计到技术实现的全过程。

查看技能