MCP HubMCP Hub
返回技能列表

conducting-chaos-engineering

jeremylongshore
更新于 Today
53 次查看
712
74
712
在 GitHub 上查看
aitestingdesign

关于

This skill enables Claude to design and execute controlled chaos engineering experiments to test system resilience. It helps with failure injection, latency simulation, and validating recovery mechanisms using tools like Chaos Mesh and AWS FIS. Use it when planning GameDays or testing circuit breakers and retry logic.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git 克隆备选方式
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/conducting-chaos-engineering

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Overview

This skill empowers Claude to act as a chaos engineering specialist, guiding users through the process of designing and implementing controlled failure scenarios to identify weaknesses and improve the robustness of their systems. It facilitates the creation of chaos experiments to validate system resilience and recovery mechanisms.

How It Works

  1. Experiment Design: Claude helps define the scope, target system, and failure scenarios for the chaos experiment based on the user's objectives.
  2. Tool Selection: Claude recommends appropriate chaos engineering tools (e.g., Chaos Mesh, Gremlin, Toxiproxy, AWS FIS) based on the target environment and desired failure types.
  3. Execution and Monitoring: Claude assists with configuring and executing the chaos experiment, while monitoring key metrics to observe system behavior under stress.
  4. Analysis and Recommendations: Claude analyzes the results of the experiment, identifies vulnerabilities, and provides recommendations for improving system resilience.

When to Use This Skill

This skill activates when you need to:

  • Design a chaos experiment to test the resilience of a specific service or application.
  • Implement failure injection strategies to simulate real-world outages.
  • Validate the effectiveness of circuit breakers and retry mechanisms.
  • Analyze system behavior under stress and identify potential vulnerabilities.

Examples

Example 1: Database Failover Testing

User request: "Help me design a chaos experiment to test our database failover process."

The skill will:

  1. Design a chaos experiment involving simulated database failures and automated failover.
  2. Recommend using Chaos Mesh for Kubernetes environments or AWS FIS for AWS-hosted databases.

Example 2: API Latency Simulation

User request: "Create a latency injection test for our API gateway to simulate network congestion."

The skill will:

  1. Design a latency injection test using Toxiproxy to introduce delays in API requests.
  2. Monitor API response times and error rates to assess the impact of latency.

Best Practices

  • Define Clear Objectives: Clearly define the goals of the chaos experiment and the specific system behavior you want to test.
  • Start Small: Begin with small-scale experiments and gradually increase the scope and intensity of the failures.
  • Automate and Monitor: Automate the execution and monitoring of chaos experiments to ensure repeatability and accurate data collection.

Integration

This skill integrates with various chaos engineering tools, allowing Claude to orchestrate failure injection, latency simulation, and resource exhaustion testing across different environments. It can also be used in conjunction with monitoring tools to track system behavior and identify potential vulnerabilities.

GitHub 仓库

jeremylongshore/claude-code-plugins-plus
路径: backups/skills-batch-20251204-000554/plugins/testing/chaos-engineering-toolkit/skills/chaos-engineering-toolkit
aiautomationclaude-codedevopsmarketplacemcp

相关推荐技能

content-collections

Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。

查看技能

creating-opencode-plugins

该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能