MCP HubMCP Hub
返回技能列表

sast-configuration

camoneart
更新于 Today
10 次查看
2
2
在 GitHub 上查看
测试testingautomation

关于

This skill helps developers configure SAST tools like Semgrep, SonarQube, and CodeQL to automate security scanning within CI/CD pipelines. It provides guidance for setting up scans, creating custom rules, and optimizing performance to reduce false positives. Use it when implementing DevSecOps practices or setting up automated vulnerability detection in your codebase.

技能文档

SAST Configuration

Static Application Security Testing (SAST) tool setup, configuration, and custom rule creation for comprehensive security scanning across multiple programming languages.

Overview

This skill provides comprehensive guidance for setting up and configuring SAST tools including Semgrep, SonarQube, and CodeQL. Use this skill when you need to:

  • Set up SAST scanning in CI/CD pipelines
  • Create custom security rules for your codebase
  • Configure quality gates and compliance policies
  • Optimize scan performance and reduce false positives
  • Integrate multiple SAST tools for defense-in-depth

Core Capabilities

1. Semgrep Configuration

  • Custom rule creation with pattern matching
  • Language-specific security rules (Python, JavaScript, Go, Java, etc.)
  • CI/CD integration (GitHub Actions, GitLab CI, Jenkins)
  • False positive tuning and rule optimization
  • Organizational policy enforcement

2. SonarQube Setup

  • Quality gate configuration
  • Security hotspot analysis
  • Code coverage and technical debt tracking
  • Custom quality profiles for languages
  • Enterprise integration with LDAP/SAML

3. CodeQL Analysis

  • GitHub Advanced Security integration
  • Custom query development
  • Vulnerability variant analysis
  • Security research workflows
  • SARIF result processing

Quick Start

Initial Assessment

  1. Identify primary programming languages in your codebase
  2. Determine compliance requirements (PCI-DSS, SOC 2, etc.)
  3. Choose SAST tool based on language support and integration needs
  4. Review baseline scan to understand current security posture

Basic Setup

# Semgrep quick start
pip install semgrep
semgrep --config=auto --error

# SonarQube with Docker
docker run -d --name sonarqube -p 9000:9000 sonarqube:latest

# CodeQL CLI setup
gh extension install github/gh-codeql
codeql database create mydb --language=python

Reference Documentation

Templates & Assets

Integration Patterns

CI/CD Pipeline Integration

# GitHub Actions example
- name: Run Semgrep
  uses: returntocorp/semgrep-action@v1
  with:
    config: >-
      p/security-audit
      p/owasp-top-ten

Pre-commit Hook

# .pre-commit-config.yaml
- repo: https://github.com/returntocorp/semgrep
  rev: v1.45.0
  hooks:
    - id: semgrep
      args: ['--config=auto', '--error']

Best Practices

  1. Start with Baseline

    • Run initial scan to establish security baseline
    • Prioritize critical and high severity findings
    • Create remediation roadmap
  2. Incremental Adoption

    • Begin with security-focused rules
    • Gradually add code quality rules
    • Implement blocking only for critical issues
  3. False Positive Management

    • Document legitimate suppressions
    • Create allow lists for known safe patterns
    • Regularly review suppressed findings
  4. Performance Optimization

    • Exclude test files and generated code
    • Use incremental scanning for large codebases
    • Cache scan results in CI/CD
  5. Team Enablement

    • Provide security training for developers
    • Create internal documentation for common patterns
    • Establish security champions program

Common Use Cases

New Project Setup

./scripts/run-sast.sh --setup --language python --tools semgrep,sonarqube

Custom Rule Development

# See references/semgrep-rules.md for detailed examples
rules:
  - id: hardcoded-jwt-secret
    pattern: jwt.encode($DATA, "...", ...)
    message: JWT secret should not be hardcoded
    severity: ERROR

Compliance Scanning

# PCI-DSS focused scan
semgrep --config p/pci-dss --json -o pci-scan-results.json

Troubleshooting

High False Positive Rate

  • Review and tune rule sensitivity
  • Add path filters to exclude test files
  • Use nostmt metadata for noisy patterns
  • Create organization-specific rule exceptions

Performance Issues

  • Enable incremental scanning
  • Parallelize scans across modules
  • Optimize rule patterns for efficiency
  • Cache dependencies and scan results

Integration Failures

  • Verify API tokens and credentials
  • Check network connectivity and proxy settings
  • Review SARIF output format compatibility
  • Validate CI/CD runner permissions

Related Skills

Tool Comparison

ToolBest ForLanguage SupportCostIntegration
SemgrepCustom rules, fast scans30+ languagesFree/EnterpriseExcellent
SonarQubeCode quality + security25+ languagesFree/CommercialGood
CodeQLDeep analysis, research10+ languagesFree (OSS)GitHub native

Next Steps

  1. Complete initial SAST tool setup
  2. Run baseline security scan
  3. Create custom rules for organization-specific patterns
  4. Integrate into CI/CD pipeline
  5. Establish security gate policies
  6. Train development team on findings and remediation

快速安装

/plugin add https://github.com/camoneart/claude-code/tree/main/sast-configuration

在 Claude Code 中复制并粘贴此命令以安装该技能

GitHub 仓库

camoneart/claude-code
路径: skills/sast-configuration

相关推荐技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能

go-test

go-test Skill为Go开发者提供全面的测试指导,涵盖单元测试、性能基准测试和集成测试的最佳实践。它能帮助您正确实现表驱动测试、子测试组织、mock接口和竞态检测,同时指导测试覆盖率分析和性能基准测试。当您编写_test.go文件、设计测试用例或优化测试策略时,这个Skill能确保您遵循Go语言的标准测试惯例。

查看技能

generating-unit-tests

该Skill能自动为源代码生成全面的单元测试,支持Jest、pytest、JUnit等多种测试框架。当开发者请求"生成测试"、"创建单元测试"或使用"gut"快捷指令时即可触发。它能智能识别合适框架或按指定框架生成测试用例,显著提升测试效率。

查看技能