MCP HubMCP Hub
返回技能列表

configuring-auto-scaling-policies

jeremylongshore
更新于 Today
56 次查看
712
74
712
在 GitHub 上查看
aidesign

关于

This skill generates production-ready auto-scaling configurations for applications and infrastructure based on user requirements. It provides complete configuration code for various platforms when users mention auto-scaling, HPA, or dynamic scaling needs. The skill implements best practices for scalability and security in its outputs.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git 克隆备选方式
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/configuring-auto-scaling-policies

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Overview

This skill empowers Claude to create and configure auto-scaling policies tailored to specific application and infrastructure needs. It streamlines the process of setting up dynamic resource allocation, ensuring optimal performance and resilience.

How It Works

  1. Requirement Gathering: Claude analyzes the user's request to understand the specific auto-scaling requirements, including target metrics (CPU, memory, etc.), scaling thresholds, and desired platform.
  2. Configuration Generation: Based on the gathered requirements, Claude generates a production-ready auto-scaling configuration, incorporating best practices for security and scalability. This includes HPA configurations, scaling policies, and necessary infrastructure setup code.
  3. Code Presentation: Claude presents the generated configuration code to the user, ready for deployment.

When to Use This Skill

This skill activates when you need to:

  • Configure auto-scaling for a Kubernetes deployment.
  • Set up dynamic scaling policies based on CPU or memory utilization.
  • Implement high availability and fault tolerance through auto-scaling.

Examples

Example 1: Scaling a Web Application

User request: "I need to configure auto-scaling for my web application in Kubernetes based on CPU utilization. Scale up when CPU usage exceeds 70%."

The skill will:

  1. Analyze the request and identify the need for a Kubernetes HPA configuration.
  2. Generate an HPA configuration file that scales the web application based on CPU utilization, with a target threshold of 70%.

Example 2: Scaling Infrastructure Based on Load

User request: "Configure auto-scaling for my infrastructure to handle peak loads during business hours. Scale up based on the number of incoming requests."

The skill will:

  1. Analyze the request and determine the need for infrastructure-level auto-scaling policies.
  2. Generate configuration code for scaling the infrastructure based on the number of incoming requests, considering peak load times.

Best Practices

  • Monitoring: Ensure proper monitoring is in place to track the performance metrics used for auto-scaling decisions.
  • Threshold Setting: Carefully choose scaling thresholds to avoid excessive scaling or under-provisioning.
  • Testing: Thoroughly test the auto-scaling configuration to ensure it behaves as expected under various load conditions.

Integration

This skill can be used in conjunction with other DevOps plugins to automate the entire deployment pipeline, from code generation to infrastructure provisioning.

GitHub 仓库

jeremylongshore/claude-code-plugins-plus
路径: backups/skills-batch-20251204-000554/plugins/devops/auto-scaling-configurator/skills/auto-scaling-configurator
aiautomationclaude-codedevopsmarketplacemcp

相关推荐技能

content-collections

Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。

查看技能

creating-opencode-plugins

该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能