instructor
About
The Instructor skill provides reliable structured data extraction from LLM responses using Pydantic validation and automatic retry logic. It enables type-safe JSON parsing, streams partial results, and supports multiple LLM providers with a consistent API. Use it when you need to enforce schemas and validate outputs from models like OpenAI or Anthropic.
Quick Install
Claude Code
Recommended/plugin add https://github.com/davila7/claude-code-templatesgit clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/instructorCopy and paste this command in Claude Code to install this skill
Documentation
Instructor: Structured LLM Outputs
When to Use This Skill
Use Instructor when you need to:
- Extract structured data from LLM responses reliably
- Validate outputs against Pydantic schemas automatically
- Retry failed extractions with automatic error handling
- Parse complex JSON with type safety and validation
- Stream partial results for real-time processing
- Support multiple LLM providers with consistent API
GitHub Stars: 15,000+ | Battle-tested: 100,000+ developers
Installation
# Base installation
pip install instructor
# With specific providers
pip install "instructor[anthropic]" # Anthropic Claude
pip install "instructor[openai]" # OpenAI
pip install "instructor[all]" # All providers
Quick Start
Basic Example: Extract User Data
import instructor
from pydantic import BaseModel
from anthropic import Anthropic
# Define output structure
class User(BaseModel):
name: str
age: int
email: str
# Create instructor client
client = instructor.from_anthropic(Anthropic())
# Extract structured data
user = client.messages.create(
model="claude-sonnet-4-5-20250929",
max_tokens=1024,
messages=[{
"role": "user",
"content": "John Doe is 30 years old. His email is [email protected]"
}],
response_model=User
)
print(user.name) # "John Doe"
print(user.age) # 30
print(user.email) # "[email protected]"
With OpenAI
from openai import OpenAI
client = instructor.from_openai(OpenAI())
user = client.chat.completions.create(
model="gpt-4o-mini",
response_model=User,
messages=[{"role": "user", "content": "Extract: Alice, 25, [email protected]"}]
)
Core Concepts
1. Response Models (Pydantic)
Response models define the structure and validation rules for LLM outputs.
Basic Model
from pydantic import BaseModel, Field
class Article(BaseModel):
title: str = Field(description="Article title")
author: str = Field(description="Author name")
word_count: int = Field(description="Number of words", gt=0)
tags: list[str] = Field(description="List of relevant tags")
article = client.messages.create(
model="claude-sonnet-4-5-20250929",
max_tokens=1024,
messages=[{
"role": "user",
"content": "Analyze this article: [article text]"
}],
response_model=Article
)
Benefits:
- Type safety with Python type hints
- Automatic validation (word_count > 0)
- Self-documenting with Field descriptions
- IDE autocomplete support
Nested Models
class Address(BaseModel):
street: str
city: str
country: str
class Person(BaseModel):
name: str
age: int
address: Address # Nested model
person = client.messages.create(
model="claude-sonnet-4-5-20250929",
max_tokens=1024,
messages=[{
"role": "user",
"content": "John lives at 123 Main St, Boston, USA"
}],
response_model=Person
)
print(person.address.city) # "Boston"
Optional Fields
from typing import Optional
class Product(BaseModel):
name: str
price: float
discount: Optional[float] = None # Optional
description: str = Field(default="No description") # Default value
# LLM doesn't need to provide discount or description
Enums for Constraints
from enum import Enum
class Sentiment(str, Enum):
POSITIVE = "positive"
NEGATIVE = "negative"
NEUTRAL = "neutral"
class Review(BaseModel):
text: str
sentiment: Sentiment # Only these 3 values allowed
review = client.messages.create(
model="claude-sonnet-4-5-20250929",
max_tokens=1024,
messages=[{
"role": "user",
"content": "This product is amazing!"
}],
response_model=Review
)
print(review.sentiment) # Sentiment.POSITIVE
2. Validation
Pydantic validates LLM outputs automatically. If validation fails, Instructor retries.
Built-in Validators
from pydantic import Field, EmailStr, HttpUrl
class Contact(BaseModel):
name: str = Field(min_length=2, max_length=100)
age: int = Field(ge=0, le=120) # 0 <= age <= 120
email: EmailStr # Validates email format
website: HttpUrl # Validates URL format
# If LLM provides invalid data, Instructor retries automatically
Custom Validators
from pydantic import field_validator
class Event(BaseModel):
name: str
date: str
attendees: int
@field_validator('date')
def validate_date(cls, v):
"""Ensure date is in YYYY-MM-DD format."""
import re
if not re.match(r'\d{4}-\d{2}-\d{2}', v):
raise ValueError('Date must be YYYY-MM-DD format')
return v
@field_validator('attendees')
def validate_attendees(cls, v):
"""Ensure positive attendees."""
if v < 1:
raise ValueError('Must have at least 1 attendee')
return v
Model-Level Validation
from pydantic import model_validator
class DateRange(BaseModel):
start_date: str
end_date: str
@model_validator(mode='after')
def check_dates(self):
"""Ensure end_date is after start_date."""
from datetime import datetime
start = datetime.strptime(self.start_date, '%Y-%m-%d')
end = datetime.strptime(self.end_date, '%Y-%m-%d')
if end < start:
raise ValueError('end_date must be after start_date')
return self
3. Automatic Retrying
Instructor retries automatically when validation fails, providing error feedback to the LLM.
# Retries up to 3 times if validation fails
user = client.messages.create(
model="claude-sonnet-4-5-20250929",
max_tokens=1024,
messages=[{
"role": "user",
"content": "Extract user from: John, age unknown"
}],
response_model=User,
max_retries=3 # Default is 3
)
# If age can't be extracted, Instructor tells the LLM:
# "Validation error: age - field required"
# LLM tries again with better extraction
How it works:
- LLM generates output
- Pydantic validates
- If invalid: Error message sent back to LLM
- LLM tries again with error feedback
- Repeats up to max_retries
4. Streaming
Stream partial results for real-time processing.
Streaming Partial Objects
from instructor import Partial
class Story(BaseModel):
title: str
content: str
tags: list[str]
# Stream partial updates as LLM generates
for partial_story in client.messages.create_partial(
model="claude-sonnet-4-5-20250929",
max_tokens=1024,
messages=[{
"role": "user",
"content": "Write a short sci-fi story"
}],
response_model=Story
):
print(f"Title: {partial_story.title}")
print(f"Content so far: {partial_story.content[:100]}...")
# Update UI in real-time
Streaming Iterables
class Task(BaseModel):
title: str
priority: str
# Stream list items as they're generated
tasks = client.messages.create_iterable(
model="claude-sonnet-4-5-20250929",
max_tokens=1024,
messages=[{
"role": "user",
"content": "Generate 10 project tasks"
}],
response_model=Task
)
for task in tasks:
print(f"- {task.title} ({task.priority})")
# Process each task as it arrives
Provider Configuration
Anthropic Claude
import instructor
from anthropic import Anthropic
client = instructor.from_anthropic(
Anthropic(api_key="your-api-key")
)
# Use with Claude models
response = client.messages.create(
model="claude-sonnet-4-5-20250929",
max_tokens=1024,
messages=[...],
response_model=YourModel
)
OpenAI
from openai import OpenAI
client = instructor.from_openai(
OpenAI(api_key="your-api-key")
)
response = client.chat.completions.create(
model="gpt-4o-mini",
response_model=YourModel,
messages=[...]
)
Local Models (Ollama)
from openai import OpenAI
# Point to local Ollama server
client = instructor.from_openai(
OpenAI(
base_url="http://localhost:11434/v1",
api_key="ollama" # Required but ignored
),
mode=instructor.Mode.JSON
)
response = client.chat.completions.create(
model="llama3.1",
response_model=YourModel,
messages=[...]
)
Common Patterns
Pattern 1: Data Extraction from Text
class CompanyInfo(BaseModel):
name: str
founded_year: int
industry: str
employees: int
headquarters: str
text = """
Tesla, Inc. was founded in 2003. It operates in the automotive and energy
industry with approximately 140,000 employees. The company is headquartered
in Austin, Texas.
"""
company = client.messages.create(
model="claude-sonnet-4-5-20250929",
max_tokens=1024,
messages=[{
"role": "user",
"content": f"Extract company information from: {text}"
}],
response_model=CompanyInfo
)
Pattern 2: Classification
class Category(str, Enum):
TECHNOLOGY = "technology"
FINANCE = "finance"
HEALTHCARE = "healthcare"
EDUCATION = "education"
OTHER = "other"
class ArticleClassification(BaseModel):
category: Category
confidence: float = Field(ge=0.0, le=1.0)
keywords: list[str]
classification = client.messages.create(
model="claude-sonnet-4-5-20250929",
max_tokens=1024,
messages=[{
"role": "user",
"content": "Classify this article: [article text]"
}],
response_model=ArticleClassification
)
Pattern 3: Multi-Entity Extraction
class Person(BaseModel):
name: str
role: str
class Organization(BaseModel):
name: str
industry: str
class Entities(BaseModel):
people: list[Person]
organizations: list[Organization]
locations: list[str]
text = "Tim Cook, CEO of Apple, announced at the event in Cupertino..."
entities = client.messages.create(
model="claude-sonnet-4-5-20250929",
max_tokens=1024,
messages=[{
"role": "user",
"content": f"Extract all entities from: {text}"
}],
response_model=Entities
)
for person in entities.people:
print(f"{person.name} - {person.role}")
Pattern 4: Structured Analysis
class SentimentAnalysis(BaseModel):
overall_sentiment: Sentiment
positive_aspects: list[str]
negative_aspects: list[str]
suggestions: list[str]
score: float = Field(ge=-1.0, le=1.0)
review = "The product works well but setup was confusing..."
analysis = client.messages.create(
model="claude-sonnet-4-5-20250929",
max_tokens=1024,
messages=[{
"role": "user",
"content": f"Analyze this review: {review}"
}],
response_model=SentimentAnalysis
)
Pattern 5: Batch Processing
def extract_person(text: str) -> Person:
return client.messages.create(
model="claude-sonnet-4-5-20250929",
max_tokens=1024,
messages=[{
"role": "user",
"content": f"Extract person from: {text}"
}],
response_model=Person
)
texts = [
"John Doe is a 30-year-old engineer",
"Jane Smith, 25, works in marketing",
"Bob Johnson, age 40, software developer"
]
people = [extract_person(text) for text in texts]
Advanced Features
Union Types
from typing import Union
class TextContent(BaseModel):
type: str = "text"
content: str
class ImageContent(BaseModel):
type: str = "image"
url: HttpUrl
caption: str
class Post(BaseModel):
title: str
content: Union[TextContent, ImageContent] # Either type
# LLM chooses appropriate type based on content
Dynamic Models
from pydantic import create_model
# Create model at runtime
DynamicUser = create_model(
'User',
name=(str, ...),
age=(int, Field(ge=0)),
email=(EmailStr, ...)
)
user = client.messages.create(
model="claude-sonnet-4-5-20250929",
max_tokens=1024,
messages=[...],
response_model=DynamicUser
)
Custom Modes
# For providers without native structured outputs
client = instructor.from_anthropic(
Anthropic(),
mode=instructor.Mode.JSON # JSON mode
)
# Available modes:
# - Mode.ANTHROPIC_TOOLS (recommended for Claude)
# - Mode.JSON (fallback)
# - Mode.TOOLS (OpenAI tools)
Context Management
# Single-use client
with instructor.from_anthropic(Anthropic()) as client:
result = client.messages.create(
model="claude-sonnet-4-5-20250929",
max_tokens=1024,
messages=[...],
response_model=YourModel
)
# Client closed automatically
Error Handling
Handling Validation Errors
from pydantic import ValidationError
try:
user = client.messages.create(
model="claude-sonnet-4-5-20250929",
max_tokens=1024,
messages=[...],
response_model=User,
max_retries=3
)
except ValidationError as e:
print(f"Failed after retries: {e}")
# Handle gracefully
except Exception as e:
print(f"API error: {e}")
Custom Error Messages
class ValidatedUser(BaseModel):
name: str = Field(description="Full name, 2-100 characters")
age: int = Field(description="Age between 0 and 120", ge=0, le=120)
email: EmailStr = Field(description="Valid email address")
class Config:
# Custom error messages
json_schema_extra = {
"examples": [
{
"name": "John Doe",
"age": 30,
"email": "[email protected]"
}
]
}
Best Practices
1. Clear Field Descriptions
# ❌ Bad: Vague
class Product(BaseModel):
name: str
price: float
# ✅ Good: Descriptive
class Product(BaseModel):
name: str = Field(description="Product name from the text")
price: float = Field(description="Price in USD, without currency symbol")
2. Use Appropriate Validation
# ✅ Good: Constrain values
class Rating(BaseModel):
score: int = Field(ge=1, le=5, description="Rating from 1 to 5 stars")
review: str = Field(min_length=10, description="Review text, at least 10 chars")
3. Provide Examples in Prompts
messages = [{
"role": "user",
"content": """Extract person info from: "John, 30, engineer"
Example format:
{
"name": "John Doe",
"age": 30,
"occupation": "engineer"
}"""
}]
4. Use Enums for Fixed Categories
# ✅ Good: Enum ensures valid values
class Status(str, Enum):
PENDING = "pending"
APPROVED = "approved"
REJECTED = "rejected"
class Application(BaseModel):
status: Status # LLM must choose from enum
5. Handle Missing Data Gracefully
class PartialData(BaseModel):
required_field: str
optional_field: Optional[str] = None
default_field: str = "default_value"
# LLM only needs to provide required_field
Comparison to Alternatives
| Feature | Instructor | Manual JSON | LangChain | DSPy |
|---|---|---|---|---|
| Type Safety | ✅ Yes | ❌ No | ⚠️ Partial | ✅ Yes |
| Auto Validation | ✅ Yes | ❌ No | ❌ No | ⚠️ Limited |
| Auto Retry | ✅ Yes | ❌ No | ❌ No | ✅ Yes |
| Streaming | ✅ Yes | ❌ No | ✅ Yes | ❌ No |
| Multi-Provider | ✅ Yes | ⚠️ Manual | ✅ Yes | ✅ Yes |
| Learning Curve | Low | Low | Medium | High |
When to choose Instructor:
- Need structured, validated outputs
- Want type safety and IDE support
- Require automatic retries
- Building data extraction systems
When to choose alternatives:
- DSPy: Need prompt optimization
- LangChain: Building complex chains
- Manual: Simple, one-off extractions
Resources
- Documentation: https://python.useinstructor.com
- GitHub: https://github.com/jxnl/instructor (15k+ stars)
- Cookbook: https://python.useinstructor.com/examples
- Discord: Community support available
See Also
references/validation.md- Advanced validation patternsreferences/providers.md- Provider-specific configurationreferences/examples.md- Real-world use cases
GitHub Repository
Related Skills
guidance
MetaThe Guidance skill enables developers to control LLM output using regex and grammars to guarantee valid JSON, XML, or code generation. It enforces structured formats and builds multi-step workflows, reducing latency compared to traditional prompting. Use it when you need to prevent invalid outputs through grammatical constraints and ensure syntactically correct results.
clip
OtherCLIP is a vision-language model for zero-shot image classification and cross-modal retrieval without fine-tuning. It enables tasks like image-text matching, semantic search, and content moderation by understanding images from natural language prompts. Developers can use it for general-purpose vision tasks where labeled training data is unavailable.
whisper
OtherWhisper is OpenAI's multilingual speech recognition model for transcribing and translating audio across 99 languages. It handles tasks like podcast transcription, meeting notes, and processing noisy or multilingual audio. Developers should use it for robust, production-ready speech-to-text capabilities.
dspy
MetaDSPy is a declarative framework for systematically building and optimizing complex AI systems like RAG pipelines and agents. It enables developers to program language models through modular components while automatically optimizing prompts using data-driven methods. Use it when you need maintainable, portable AI workflows instead of manual prompt engineering.
