Back to Skills

guidance

davila7
Updated Today
15 views
15,516
1,344
15,516
View on GitHub
MetaPrompt EngineeringGuidanceConstrained GenerationStructured OutputJSON ValidationGrammarMicrosoft ResearchFormat EnforcementMulti-Step Workflows

About

The Guidance skill enables developers to control LLM output using regex and grammars to guarantee valid JSON, XML, or code generation. It enforces structured formats and builds multi-step workflows, reducing latency compared to traditional prompting. Use it when you need to prevent invalid outputs through grammatical constraints and ensure syntactically correct results.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/davila7/claude-code-templates
Git CloneAlternative
git clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/guidance

Copy and paste this command in Claude Code to install this skill

Documentation

Guidance: Constrained LLM Generation

When to Use This Skill

Use Guidance when you need to:

  • Control LLM output syntax with regex or grammars
  • Guarantee valid JSON/XML/code generation
  • Reduce latency vs traditional prompting approaches
  • Enforce structured formats (dates, emails, IDs, etc.)
  • Build multi-step workflows with Pythonic control flow
  • Prevent invalid outputs through grammatical constraints

GitHub Stars: 18,000+ | From: Microsoft Research

Installation

# Base installation
pip install guidance

# With specific backends
pip install guidance[transformers]  # Hugging Face models
pip install guidance[llama_cpp]     # llama.cpp models

Quick Start

Basic Example: Structured Generation

from guidance import models, gen

# Load model (supports OpenAI, Transformers, llama.cpp)
lm = models.OpenAI("gpt-4")

# Generate with constraints
result = lm + "The capital of France is " + gen("capital", max_tokens=5)

print(result["capital"])  # "Paris"

With Anthropic Claude

from guidance import models, gen, system, user, assistant

# Configure Claude
lm = models.Anthropic("claude-sonnet-4-5-20250929")

# Use context managers for chat format
with system():
    lm += "You are a helpful assistant."

with user():
    lm += "What is the capital of France?"

with assistant():
    lm += gen(max_tokens=20)

Core Concepts

1. Context Managers

Guidance uses Pythonic context managers for chat-style interactions.

from guidance import system, user, assistant, gen

lm = models.Anthropic("claude-sonnet-4-5-20250929")

# System message
with system():
    lm += "You are a JSON generation expert."

# User message
with user():
    lm += "Generate a person object with name and age."

# Assistant response
with assistant():
    lm += gen("response", max_tokens=100)

print(lm["response"])

Benefits:

  • Natural chat flow
  • Clear role separation
  • Easy to read and maintain

2. Constrained Generation

Guidance ensures outputs match specified patterns using regex or grammars.

Regex Constraints

from guidance import models, gen

lm = models.Anthropic("claude-sonnet-4-5-20250929")

# Constrain to valid email format
lm += "Email: " + gen("email", regex=r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}")

# Constrain to date format (YYYY-MM-DD)
lm += "Date: " + gen("date", regex=r"\d{4}-\d{2}-\d{2}")

# Constrain to phone number
lm += "Phone: " + gen("phone", regex=r"\d{3}-\d{3}-\d{4}")

print(lm["email"])  # Guaranteed valid email
print(lm["date"])   # Guaranteed YYYY-MM-DD format

How it works:

  • Regex converted to grammar at token level
  • Invalid tokens filtered during generation
  • Model can only produce matching outputs

Selection Constraints

from guidance import models, gen, select

lm = models.Anthropic("claude-sonnet-4-5-20250929")

# Constrain to specific choices
lm += "Sentiment: " + select(["positive", "negative", "neutral"], name="sentiment")

# Multiple-choice selection
lm += "Best answer: " + select(
    ["A) Paris", "B) London", "C) Berlin", "D) Madrid"],
    name="answer"
)

print(lm["sentiment"])  # One of: positive, negative, neutral
print(lm["answer"])     # One of: A, B, C, or D

3. Token Healing

Guidance automatically "heals" token boundaries between prompt and generation.

Problem: Tokenization creates unnatural boundaries.

# Without token healing
prompt = "The capital of France is "
# Last token: " is "
# First generated token might be " Par" (with leading space)
# Result: "The capital of France is  Paris" (double space!)

Solution: Guidance backs up one token and regenerates.

from guidance import models, gen

lm = models.Anthropic("claude-sonnet-4-5-20250929")

# Token healing enabled by default
lm += "The capital of France is " + gen("capital", max_tokens=5)
# Result: "The capital of France is Paris" (correct spacing)

Benefits:

  • Natural text boundaries
  • No awkward spacing issues
  • Better model performance (sees natural token sequences)

4. Grammar-Based Generation

Define complex structures using context-free grammars.

from guidance import models, gen

lm = models.Anthropic("claude-sonnet-4-5-20250929")

# JSON grammar (simplified)
json_grammar = """
{
    "name": <gen name regex="[A-Za-z ]+" max_tokens=20>,
    "age": <gen age regex="[0-9]+" max_tokens=3>,
    "email": <gen email regex="[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}" max_tokens=50>
}
"""

# Generate valid JSON
lm += gen("person", grammar=json_grammar)

print(lm["person"])  # Guaranteed valid JSON structure

Use cases:

  • Complex structured outputs
  • Nested data structures
  • Programming language syntax
  • Domain-specific languages

5. Guidance Functions

Create reusable generation patterns with the @guidance decorator.

from guidance import guidance, gen, models

@guidance
def generate_person(lm):
    """Generate a person with name and age."""
    lm += "Name: " + gen("name", max_tokens=20, stop="\n")
    lm += "\nAge: " + gen("age", regex=r"[0-9]+", max_tokens=3)
    return lm

# Use the function
lm = models.Anthropic("claude-sonnet-4-5-20250929")
lm = generate_person(lm)

print(lm["name"])
print(lm["age"])

Stateful Functions:

@guidance(stateless=False)
def react_agent(lm, question, tools, max_rounds=5):
    """ReAct agent with tool use."""
    lm += f"Question: {question}\n\n"

    for i in range(max_rounds):
        # Thought
        lm += f"Thought {i+1}: " + gen("thought", stop="\n")

        # Action
        lm += "\nAction: " + select(list(tools.keys()), name="action")

        # Execute tool
        tool_result = tools[lm["action"]]()
        lm += f"\nObservation: {tool_result}\n\n"

        # Check if done
        lm += "Done? " + select(["Yes", "No"], name="done")
        if lm["done"] == "Yes":
            break

    # Final answer
    lm += "\nFinal Answer: " + gen("answer", max_tokens=100)
    return lm

Backend Configuration

Anthropic Claude

from guidance import models

lm = models.Anthropic(
    model="claude-sonnet-4-5-20250929",
    api_key="your-api-key"  # Or set ANTHROPIC_API_KEY env var
)

OpenAI

lm = models.OpenAI(
    model="gpt-4o-mini",
    api_key="your-api-key"  # Or set OPENAI_API_KEY env var
)

Local Models (Transformers)

from guidance.models import Transformers

lm = Transformers(
    "microsoft/Phi-4-mini-instruct",
    device="cuda"  # Or "cpu"
)

Local Models (llama.cpp)

from guidance.models import LlamaCpp

lm = LlamaCpp(
    model_path="/path/to/model.gguf",
    n_ctx=4096,
    n_gpu_layers=35
)

Common Patterns

Pattern 1: JSON Generation

from guidance import models, gen, system, user, assistant

lm = models.Anthropic("claude-sonnet-4-5-20250929")

with system():
    lm += "You generate valid JSON."

with user():
    lm += "Generate a user profile with name, age, and email."

with assistant():
    lm += """{
    "name": """ + gen("name", regex=r'"[A-Za-z ]+"', max_tokens=30) + """,
    "age": """ + gen("age", regex=r"[0-9]+", max_tokens=3) + """,
    "email": """ + gen("email", regex=r'"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}"', max_tokens=50) + """
}"""

print(lm)  # Valid JSON guaranteed

Pattern 2: Classification

from guidance import models, gen, select

lm = models.Anthropic("claude-sonnet-4-5-20250929")

text = "This product is amazing! I love it."

lm += f"Text: {text}\n"
lm += "Sentiment: " + select(["positive", "negative", "neutral"], name="sentiment")
lm += "\nConfidence: " + gen("confidence", regex=r"[0-9]+", max_tokens=3) + "%"

print(f"Sentiment: {lm['sentiment']}")
print(f"Confidence: {lm['confidence']}%")

Pattern 3: Multi-Step Reasoning

from guidance import models, gen, guidance

@guidance
def chain_of_thought(lm, question):
    """Generate answer with step-by-step reasoning."""
    lm += f"Question: {question}\n\n"

    # Generate multiple reasoning steps
    for i in range(3):
        lm += f"Step {i+1}: " + gen(f"step_{i+1}", stop="\n", max_tokens=100) + "\n"

    # Final answer
    lm += "\nTherefore, the answer is: " + gen("answer", max_tokens=50)

    return lm

lm = models.Anthropic("claude-sonnet-4-5-20250929")
lm = chain_of_thought(lm, "What is 15% of 200?")

print(lm["answer"])

Pattern 4: ReAct Agent

from guidance import models, gen, select, guidance

@guidance(stateless=False)
def react_agent(lm, question):
    """ReAct agent with tool use."""
    tools = {
        "calculator": lambda expr: eval(expr),
        "search": lambda query: f"Search results for: {query}",
    }

    lm += f"Question: {question}\n\n"

    for round in range(5):
        # Thought
        lm += f"Thought: " + gen("thought", stop="\n") + "\n"

        # Action selection
        lm += "Action: " + select(["calculator", "search", "answer"], name="action")

        if lm["action"] == "answer":
            lm += "\nFinal Answer: " + gen("answer", max_tokens=100)
            break

        # Action input
        lm += "\nAction Input: " + gen("action_input", stop="\n") + "\n"

        # Execute tool
        if lm["action"] in tools:
            result = tools[lm["action"]](lm["action_input"])
            lm += f"Observation: {result}\n\n"

    return lm

lm = models.Anthropic("claude-sonnet-4-5-20250929")
lm = react_agent(lm, "What is 25 * 4 + 10?")
print(lm["answer"])

Pattern 5: Data Extraction

from guidance import models, gen, guidance

@guidance
def extract_entities(lm, text):
    """Extract structured entities from text."""
    lm += f"Text: {text}\n\n"

    # Extract person
    lm += "Person: " + gen("person", stop="\n", max_tokens=30) + "\n"

    # Extract organization
    lm += "Organization: " + gen("organization", stop="\n", max_tokens=30) + "\n"

    # Extract date
    lm += "Date: " + gen("date", regex=r"\d{4}-\d{2}-\d{2}", max_tokens=10) + "\n"

    # Extract location
    lm += "Location: " + gen("location", stop="\n", max_tokens=30) + "\n"

    return lm

text = "Tim Cook announced at Apple Park on 2024-09-15 in Cupertino."

lm = models.Anthropic("claude-sonnet-4-5-20250929")
lm = extract_entities(lm, text)

print(f"Person: {lm['person']}")
print(f"Organization: {lm['organization']}")
print(f"Date: {lm['date']}")
print(f"Location: {lm['location']}")

Best Practices

1. Use Regex for Format Validation

# ✅ Good: Regex ensures valid format
lm += "Email: " + gen("email", regex=r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}")

# ❌ Bad: Free generation may produce invalid emails
lm += "Email: " + gen("email", max_tokens=50)

2. Use select() for Fixed Categories

# ✅ Good: Guaranteed valid category
lm += "Status: " + select(["pending", "approved", "rejected"], name="status")

# ❌ Bad: May generate typos or invalid values
lm += "Status: " + gen("status", max_tokens=20)

3. Leverage Token Healing

# Token healing is enabled by default
# No special action needed - just concatenate naturally
lm += "The capital is " + gen("capital")  # Automatic healing

4. Use stop Sequences

# ✅ Good: Stop at newline for single-line outputs
lm += "Name: " + gen("name", stop="\n")

# ❌ Bad: May generate multiple lines
lm += "Name: " + gen("name", max_tokens=50)

5. Create Reusable Functions

# ✅ Good: Reusable pattern
@guidance
def generate_person(lm):
    lm += "Name: " + gen("name", stop="\n")
    lm += "\nAge: " + gen("age", regex=r"[0-9]+")
    return lm

# Use multiple times
lm = generate_person(lm)
lm += "\n\n"
lm = generate_person(lm)

6. Balance Constraints

# ✅ Good: Reasonable constraints
lm += gen("name", regex=r"[A-Za-z ]+", max_tokens=30)

# ❌ Too strict: May fail or be very slow
lm += gen("name", regex=r"^(John|Jane)$", max_tokens=10)

Comparison to Alternatives

FeatureGuidanceInstructorOutlinesLMQL
Regex Constraints✅ Yes❌ No✅ Yes✅ Yes
Grammar Support✅ CFG❌ No✅ CFG✅ CFG
Pydantic Validation❌ No✅ Yes✅ Yes❌ No
Token Healing✅ Yes❌ No✅ Yes❌ No
Local Models✅ Yes⚠️ Limited✅ Yes✅ Yes
API Models✅ Yes✅ Yes⚠️ Limited✅ Yes
Pythonic Syntax✅ Yes✅ Yes✅ Yes❌ SQL-like
Learning CurveLowLowMediumHigh

When to choose Guidance:

  • Need regex/grammar constraints
  • Want token healing
  • Building complex workflows with control flow
  • Using local models (Transformers, llama.cpp)
  • Prefer Pythonic syntax

When to choose alternatives:

  • Instructor: Need Pydantic validation with automatic retrying
  • Outlines: Need JSON schema validation
  • LMQL: Prefer declarative query syntax

Performance Characteristics

Latency Reduction:

  • 30-50% faster than traditional prompting for constrained outputs
  • Token healing reduces unnecessary regeneration
  • Grammar constraints prevent invalid token generation

Memory Usage:

  • Minimal overhead vs unconstrained generation
  • Grammar compilation cached after first use
  • Efficient token filtering at inference time

Token Efficiency:

  • Prevents wasted tokens on invalid outputs
  • No need for retry loops
  • Direct path to valid outputs

Resources

See Also

  • references/constraints.md - Comprehensive regex and grammar patterns
  • references/backends.md - Backend-specific configuration
  • references/examples.md - Production-ready examples

GitHub Repository

davila7/claude-code-templates
Path: cli-tool/components/skills/ai-research/prompt-engineering-guidance
anthropicanthropic-claudeclaudeclaude-code

Related Skills

instructor

Testing

The Instructor skill provides reliable structured data extraction from LLM responses using Pydantic validation and automatic retry logic. It enables type-safe JSON parsing, streams partial results, and supports multiple LLM providers with a consistent API. Use it when you need to enforce schemas and validate outputs from models like OpenAI or Anthropic.

View skill

dspy

Meta

DSPy is a declarative framework for systematically building and optimizing complex AI systems like RAG pipelines and agents. It enables developers to program language models through modular components while automatically optimizing prompts using data-driven methods. Use it when you need maintainable, portable AI workflows instead of manual prompt engineering.

View skill

outlines

Meta

Outlines ensures structured text generation that guarantees valid JSON/XML/code outputs by enforcing grammars and JSON schemas during inference. It provides type-safe results using Pydantic models and supports local models like Transformers and vLLM for maximum speed. Use this skill when you need to constrain model outputs to specific formats or data structures with zero-overhead.

View skill

grpo-rl-training

Design

This skill provides expert guidance for implementing GRPO (Group Relative Policy Optimization) reinforcement learning fine-tuning using the TRL library. It's designed for training models on tasks requiring structured outputs, verifiable reasoning, or specific formats like JSON/XML. Use it when you need to fine-tune language models with custom reward functions for objective, task-specific improvements.

View skill