dspy
About
DSPy is a declarative framework for systematically building and optimizing complex AI systems like RAG pipelines and agents. It enables developers to program language models through modular components while automatically optimizing prompts using data-driven methods. Use it when you need maintainable, portable AI workflows instead of manual prompt engineering.
Quick Install
Claude Code
Recommended/plugin add https://github.com/davila7/claude-code-templatesgit clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/dspyCopy and paste this command in Claude Code to install this skill
Documentation
DSPy: Declarative Language Model Programming
When to Use This Skill
Use DSPy when you need to:
- Build complex AI systems with multiple components and workflows
- Program LMs declaratively instead of manual prompt engineering
- Optimize prompts automatically using data-driven methods
- Create modular AI pipelines that are maintainable and portable
- Improve model outputs systematically with optimizers
- Build RAG systems, agents, or classifiers with better reliability
GitHub Stars: 22,000+ | Created By: Stanford NLP
Installation
# Stable release
pip install dspy
# Latest development version
pip install git+https://github.com/stanfordnlp/dspy.git
# With specific LM providers
pip install dspy[openai] # OpenAI
pip install dspy[anthropic] # Anthropic Claude
pip install dspy[all] # All providers
Quick Start
Basic Example: Question Answering
import dspy
# Configure your language model
lm = dspy.Claude(model="claude-sonnet-4-5-20250929")
dspy.settings.configure(lm=lm)
# Define a signature (input → output)
class QA(dspy.Signature):
"""Answer questions with short factual answers."""
question = dspy.InputField()
answer = dspy.OutputField(desc="often between 1 and 5 words")
# Create a module
qa = dspy.Predict(QA)
# Use it
response = qa(question="What is the capital of France?")
print(response.answer) # "Paris"
Chain of Thought Reasoning
import dspy
lm = dspy.Claude(model="claude-sonnet-4-5-20250929")
dspy.settings.configure(lm=lm)
# Use ChainOfThought for better reasoning
class MathProblem(dspy.Signature):
"""Solve math word problems."""
problem = dspy.InputField()
answer = dspy.OutputField(desc="numerical answer")
# ChainOfThought generates reasoning steps automatically
cot = dspy.ChainOfThought(MathProblem)
response = cot(problem="If John has 5 apples and gives 2 to Mary, how many does he have?")
print(response.rationale) # Shows reasoning steps
print(response.answer) # "3"
Core Concepts
1. Signatures
Signatures define the structure of your AI task (inputs → outputs):
# Inline signature (simple)
qa = dspy.Predict("question -> answer")
# Class signature (detailed)
class Summarize(dspy.Signature):
"""Summarize text into key points."""
text = dspy.InputField()
summary = dspy.OutputField(desc="bullet points, 3-5 items")
summarizer = dspy.ChainOfThought(Summarize)
When to use each:
- Inline: Quick prototyping, simple tasks
- Class: Complex tasks, type hints, better documentation
2. Modules
Modules are reusable components that transform inputs to outputs:
dspy.Predict
Basic prediction module:
predictor = dspy.Predict("context, question -> answer")
result = predictor(context="Paris is the capital of France",
question="What is the capital?")
dspy.ChainOfThought
Generates reasoning steps before answering:
cot = dspy.ChainOfThought("question -> answer")
result = cot(question="Why is the sky blue?")
print(result.rationale) # Reasoning steps
print(result.answer) # Final answer
dspy.ReAct
Agent-like reasoning with tools:
from dspy.predict import ReAct
class SearchQA(dspy.Signature):
"""Answer questions using search."""
question = dspy.InputField()
answer = dspy.OutputField()
def search_tool(query: str) -> str:
"""Search Wikipedia."""
# Your search implementation
return results
react = ReAct(SearchQA, tools=[search_tool])
result = react(question="When was Python created?")
dspy.ProgramOfThought
Generates and executes code for reasoning:
pot = dspy.ProgramOfThought("question -> answer")
result = pot(question="What is 15% of 240?")
# Generates: answer = 240 * 0.15
3. Optimizers
Optimizers improve your modules automatically using training data:
BootstrapFewShot
Learns from examples:
from dspy.teleprompt import BootstrapFewShot
# Training data
trainset = [
dspy.Example(question="What is 2+2?", answer="4").with_inputs("question"),
dspy.Example(question="What is 3+5?", answer="8").with_inputs("question"),
]
# Define metric
def validate_answer(example, pred, trace=None):
return example.answer == pred.answer
# Optimize
optimizer = BootstrapFewShot(metric=validate_answer, max_bootstrapped_demos=3)
optimized_qa = optimizer.compile(qa, trainset=trainset)
# Now optimized_qa performs better!
MIPRO (Most Important Prompt Optimization)
Iteratively improves prompts:
from dspy.teleprompt import MIPRO
optimizer = MIPRO(
metric=validate_answer,
num_candidates=10,
init_temperature=1.0
)
optimized_cot = optimizer.compile(
cot,
trainset=trainset,
num_trials=100
)
BootstrapFinetune
Creates datasets for model fine-tuning:
from dspy.teleprompt import BootstrapFinetune
optimizer = BootstrapFinetune(metric=validate_answer)
optimized_module = optimizer.compile(qa, trainset=trainset)
# Exports training data for fine-tuning
4. Building Complex Systems
Multi-Stage Pipeline
import dspy
class MultiHopQA(dspy.Module):
def __init__(self):
super().__init__()
self.retrieve = dspy.Retrieve(k=3)
self.generate_query = dspy.ChainOfThought("question -> search_query")
self.generate_answer = dspy.ChainOfThought("context, question -> answer")
def forward(self, question):
# Stage 1: Generate search query
search_query = self.generate_query(question=question).search_query
# Stage 2: Retrieve context
passages = self.retrieve(search_query).passages
context = "\n".join(passages)
# Stage 3: Generate answer
answer = self.generate_answer(context=context, question=question).answer
return dspy.Prediction(answer=answer, context=context)
# Use the pipeline
qa_system = MultiHopQA()
result = qa_system(question="Who wrote the book that inspired the movie Blade Runner?")
RAG System with Optimization
import dspy
from dspy.retrieve.chromadb_rm import ChromadbRM
# Configure retriever
retriever = ChromadbRM(
collection_name="documents",
persist_directory="./chroma_db"
)
class RAG(dspy.Module):
def __init__(self, num_passages=3):
super().__init__()
self.retrieve = dspy.Retrieve(k=num_passages)
self.generate = dspy.ChainOfThought("context, question -> answer")
def forward(self, question):
context = self.retrieve(question).passages
return self.generate(context=context, question=question)
# Create and optimize
rag = RAG()
# Optimize with training data
from dspy.teleprompt import BootstrapFewShot
optimizer = BootstrapFewShot(metric=validate_answer)
optimized_rag = optimizer.compile(rag, trainset=trainset)
LM Provider Configuration
Anthropic Claude
import dspy
lm = dspy.Claude(
model="claude-sonnet-4-5-20250929",
api_key="your-api-key", # Or set ANTHROPIC_API_KEY env var
max_tokens=1000,
temperature=0.7
)
dspy.settings.configure(lm=lm)
OpenAI
lm = dspy.OpenAI(
model="gpt-4",
api_key="your-api-key",
max_tokens=1000
)
dspy.settings.configure(lm=lm)
Local Models (Ollama)
lm = dspy.OllamaLocal(
model="llama3.1",
base_url="http://localhost:11434"
)
dspy.settings.configure(lm=lm)
Multiple Models
# Different models for different tasks
cheap_lm = dspy.OpenAI(model="gpt-3.5-turbo")
strong_lm = dspy.Claude(model="claude-sonnet-4-5-20250929")
# Use cheap model for retrieval, strong model for reasoning
with dspy.settings.context(lm=cheap_lm):
context = retriever(question)
with dspy.settings.context(lm=strong_lm):
answer = generator(context=context, question=question)
Common Patterns
Pattern 1: Structured Output
from pydantic import BaseModel, Field
class PersonInfo(BaseModel):
name: str = Field(description="Full name")
age: int = Field(description="Age in years")
occupation: str = Field(description="Current job")
class ExtractPerson(dspy.Signature):
"""Extract person information from text."""
text = dspy.InputField()
person: PersonInfo = dspy.OutputField()
extractor = dspy.TypedPredictor(ExtractPerson)
result = extractor(text="John Doe is a 35-year-old software engineer.")
print(result.person.name) # "John Doe"
print(result.person.age) # 35
Pattern 2: Assertion-Driven Optimization
import dspy
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
class MathQA(dspy.Module):
def __init__(self):
super().__init__()
self.solve = dspy.ChainOfThought("problem -> solution: float")
def forward(self, problem):
solution = self.solve(problem=problem).solution
# Assert solution is numeric
dspy.Assert(
isinstance(float(solution), float),
"Solution must be a number",
backtrack=backtrack_handler
)
return dspy.Prediction(solution=solution)
Pattern 3: Self-Consistency
import dspy
from collections import Counter
class ConsistentQA(dspy.Module):
def __init__(self, num_samples=5):
super().__init__()
self.qa = dspy.ChainOfThought("question -> answer")
self.num_samples = num_samples
def forward(self, question):
# Generate multiple answers
answers = []
for _ in range(self.num_samples):
result = self.qa(question=question)
answers.append(result.answer)
# Return most common answer
most_common = Counter(answers).most_common(1)[0][0]
return dspy.Prediction(answer=most_common)
Pattern 4: Retrieval with Reranking
class RerankedRAG(dspy.Module):
def __init__(self):
super().__init__()
self.retrieve = dspy.Retrieve(k=10)
self.rerank = dspy.Predict("question, passage -> relevance_score: float")
self.answer = dspy.ChainOfThought("context, question -> answer")
def forward(self, question):
# Retrieve candidates
passages = self.retrieve(question).passages
# Rerank passages
scored = []
for passage in passages:
score = float(self.rerank(question=question, passage=passage).relevance_score)
scored.append((score, passage))
# Take top 3
top_passages = [p for _, p in sorted(scored, reverse=True)[:3]]
context = "\n\n".join(top_passages)
# Generate answer
return self.answer(context=context, question=question)
Evaluation and Metrics
Custom Metrics
def exact_match(example, pred, trace=None):
"""Exact match metric."""
return example.answer.lower() == pred.answer.lower()
def f1_score(example, pred, trace=None):
"""F1 score for text overlap."""
pred_tokens = set(pred.answer.lower().split())
gold_tokens = set(example.answer.lower().split())
if not pred_tokens:
return 0.0
precision = len(pred_tokens & gold_tokens) / len(pred_tokens)
recall = len(pred_tokens & gold_tokens) / len(gold_tokens)
if precision + recall == 0:
return 0.0
return 2 * (precision * recall) / (precision + recall)
Evaluation
from dspy.evaluate import Evaluate
# Create evaluator
evaluator = Evaluate(
devset=testset,
metric=exact_match,
num_threads=4,
display_progress=True
)
# Evaluate model
score = evaluator(qa_system)
print(f"Accuracy: {score}")
# Compare optimized vs unoptimized
score_before = evaluator(qa)
score_after = evaluator(optimized_qa)
print(f"Improvement: {score_after - score_before:.2%}")
Best Practices
1. Start Simple, Iterate
# Start with Predict
qa = dspy.Predict("question -> answer")
# Add reasoning if needed
qa = dspy.ChainOfThought("question -> answer")
# Add optimization when you have data
optimized_qa = optimizer.compile(qa, trainset=data)
2. Use Descriptive Signatures
# ❌ Bad: Vague
class Task(dspy.Signature):
input = dspy.InputField()
output = dspy.OutputField()
# ✅ Good: Descriptive
class SummarizeArticle(dspy.Signature):
"""Summarize news articles into 3-5 key points."""
article = dspy.InputField(desc="full article text")
summary = dspy.OutputField(desc="bullet points, 3-5 items")
3. Optimize with Representative Data
# Create diverse training examples
trainset = [
dspy.Example(question="factual", answer="...).with_inputs("question"),
dspy.Example(question="reasoning", answer="...").with_inputs("question"),
dspy.Example(question="calculation", answer="...").with_inputs("question"),
]
# Use validation set for metric
def metric(example, pred, trace=None):
return example.answer in pred.answer
4. Save and Load Optimized Models
# Save
optimized_qa.save("models/qa_v1.json")
# Load
loaded_qa = dspy.ChainOfThought("question -> answer")
loaded_qa.load("models/qa_v1.json")
5. Monitor and Debug
# Enable tracing
dspy.settings.configure(lm=lm, trace=[])
# Run prediction
result = qa(question="...")
# Inspect trace
for call in dspy.settings.trace:
print(f"Prompt: {call['prompt']}")
print(f"Response: {call['response']}")
Comparison to Other Approaches
| Feature | Manual Prompting | LangChain | DSPy |
|---|---|---|---|
| Prompt Engineering | Manual | Manual | Automatic |
| Optimization | Trial & error | None | Data-driven |
| Modularity | Low | Medium | High |
| Type Safety | No | Limited | Yes (Signatures) |
| Portability | Low | Medium | High |
| Learning Curve | Low | Medium | Medium-High |
When to choose DSPy:
- You have training data or can generate it
- You need systematic prompt improvement
- You're building complex multi-stage systems
- You want to optimize across different LMs
When to choose alternatives:
- Quick prototypes (manual prompting)
- Simple chains with existing tools (LangChain)
- Custom optimization logic needed
Resources
- Documentation: https://dspy.ai
- GitHub: https://github.com/stanfordnlp/dspy (22k+ stars)
- Discord: https://discord.gg/XCGy2WDCQB
- Twitter: @DSPyOSS
- Paper: "DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines"
See Also
references/modules.md- Detailed module guide (Predict, ChainOfThought, ReAct, ProgramOfThought)references/optimizers.md- Optimization algorithms (BootstrapFewShot, MIPRO, BootstrapFinetune)references/examples.md- Real-world examples (RAG, agents, classifiers)
GitHub Repository
Related Skills
pinecone
DevelopmentPinecone is a fully managed vector database for production AI applications, featuring auto-scaling, low latency (<100ms p95), and hybrid search. It's ideal for developers who need a serverless solution for production RAG, semantic search, or recommendation systems without managing infrastructure. Use it when you require metadata filtering, namespaces, and scaling to billions of vectors.
sglang
MetaSGLang is a high-performance LLM serving framework that enables fast structured generation with JSON/regex outputs and constrained decoding. It's ideal for agentic workflows with tool calls and multi-turn conversations, offering significantly faster inference through RadixAttention prefix caching. Use it when you need production-scale performance with shared context across requests.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers and offers key features like tool calling, memory management, and vector store retrieval. Use it for rapid prototyping or deploying production systems like chatbots, autonomous agents, and question-answering tools.
guidance
MetaThe Guidance skill enables developers to control LLM output using regex and grammars to guarantee valid JSON, XML, or code generation. It enforces structured formats and builds multi-step workflows, reducing latency compared to traditional prompting. Use it when you need to prevent invalid outputs through grammatical constraints and ensure syntactically correct results.
