outlines
About
Outlines ensures structured text generation that guarantees valid JSON/XML/code outputs by enforcing grammars and JSON schemas during inference. It provides type-safe results using Pydantic models and supports local models like Transformers and vLLM for maximum speed. Use this skill when you need to constrain model outputs to specific formats or data structures with zero-overhead.
Quick Install
Claude Code
Recommended/plugin add https://github.com/davila7/claude-code-templatesgit clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/outlinesCopy and paste this command in Claude Code to install this skill
Documentation
Outlines: Structured Text Generation
When to Use This Skill
Use Outlines when you need to:
- Guarantee valid JSON/XML/code structure during generation
- Use Pydantic models for type-safe outputs
- Support local models (Transformers, llama.cpp, vLLM)
- Maximize inference speed with zero-overhead structured generation
- Generate against JSON schemas automatically
- Control token sampling at the grammar level
GitHub Stars: 8,000+ | From: dottxt.ai (formerly .txt)
Installation
# Base installation
pip install outlines
# With specific backends
pip install outlines transformers # Hugging Face models
pip install outlines llama-cpp-python # llama.cpp
pip install outlines vllm # vLLM for high-throughput
Quick Start
Basic Example: Classification
import outlines
from typing import Literal
# Load model
model = outlines.models.transformers("microsoft/Phi-3-mini-4k-instruct")
# Generate with type constraint
prompt = "Sentiment of 'This product is amazing!': "
generator = outlines.generate.choice(model, ["positive", "negative", "neutral"])
sentiment = generator(prompt)
print(sentiment) # "positive" (guaranteed one of these)
With Pydantic Models
from pydantic import BaseModel
import outlines
class User(BaseModel):
name: str
age: int
email: str
model = outlines.models.transformers("microsoft/Phi-3-mini-4k-instruct")
# Generate structured output
prompt = "Extract user: John Doe, 30 years old, [email protected]"
generator = outlines.generate.json(model, User)
user = generator(prompt)
print(user.name) # "John Doe"
print(user.age) # 30
print(user.email) # "[email protected]"
Core Concepts
1. Constrained Token Sampling
Outlines uses Finite State Machines (FSM) to constrain token generation at the logit level.
How it works:
- Convert schema (JSON/Pydantic/regex) to context-free grammar (CFG)
- Transform CFG into Finite State Machine (FSM)
- Filter invalid tokens at each step during generation
- Fast-forward when only one valid token exists
Benefits:
- Zero overhead: Filtering happens at token level
- Speed improvement: Fast-forward through deterministic paths
- Guaranteed validity: Invalid outputs impossible
import outlines
# Pydantic model -> JSON schema -> CFG -> FSM
class Person(BaseModel):
name: str
age: int
model = outlines.models.transformers("microsoft/Phi-3-mini-4k-instruct")
# Behind the scenes:
# 1. Person -> JSON schema
# 2. JSON schema -> CFG
# 3. CFG -> FSM
# 4. FSM filters tokens during generation
generator = outlines.generate.json(model, Person)
result = generator("Generate person: Alice, 25")
2. Structured Generators
Outlines provides specialized generators for different output types.
Choice Generator
# Multiple choice selection
generator = outlines.generate.choice(
model,
["positive", "negative", "neutral"]
)
sentiment = generator("Review: This is great!")
# Result: One of the three choices
JSON Generator
from pydantic import BaseModel
class Product(BaseModel):
name: str
price: float
in_stock: bool
# Generate valid JSON matching schema
generator = outlines.generate.json(model, Product)
product = generator("Extract: iPhone 15, $999, available")
# Guaranteed valid Product instance
print(type(product)) # <class '__main__.Product'>
Regex Generator
# Generate text matching regex
generator = outlines.generate.regex(
model,
r"[0-9]{3}-[0-9]{3}-[0-9]{4}" # Phone number pattern
)
phone = generator("Generate phone number:")
# Result: "555-123-4567" (guaranteed to match pattern)
Integer/Float Generators
# Generate specific numeric types
int_generator = outlines.generate.integer(model)
age = int_generator("Person's age:") # Guaranteed integer
float_generator = outlines.generate.float(model)
price = float_generator("Product price:") # Guaranteed float
3. Model Backends
Outlines supports multiple local and API-based backends.
Transformers (Hugging Face)
import outlines
# Load from Hugging Face
model = outlines.models.transformers(
"microsoft/Phi-3-mini-4k-instruct",
device="cuda" # Or "cpu"
)
# Use with any generator
generator = outlines.generate.json(model, YourModel)
llama.cpp
# Load GGUF model
model = outlines.models.llamacpp(
"./models/llama-3.1-8b-instruct.Q4_K_M.gguf",
n_gpu_layers=35
)
generator = outlines.generate.json(model, YourModel)
vLLM (High Throughput)
# For production deployments
model = outlines.models.vllm(
"meta-llama/Llama-3.1-8B-Instruct",
tensor_parallel_size=2 # Multi-GPU
)
generator = outlines.generate.json(model, YourModel)
OpenAI (Limited Support)
# Basic OpenAI support
model = outlines.models.openai(
"gpt-4o-mini",
api_key="your-api-key"
)
# Note: Some features limited with API models
generator = outlines.generate.json(model, YourModel)
4. Pydantic Integration
Outlines has first-class Pydantic support with automatic schema translation.
Basic Models
from pydantic import BaseModel, Field
class Article(BaseModel):
title: str = Field(description="Article title")
author: str = Field(description="Author name")
word_count: int = Field(description="Number of words", gt=0)
tags: list[str] = Field(description="List of tags")
model = outlines.models.transformers("microsoft/Phi-3-mini-4k-instruct")
generator = outlines.generate.json(model, Article)
article = generator("Generate article about AI")
print(article.title)
print(article.word_count) # Guaranteed > 0
Nested Models
class Address(BaseModel):
street: str
city: str
country: str
class Person(BaseModel):
name: str
age: int
address: Address # Nested model
generator = outlines.generate.json(model, Person)
person = generator("Generate person in New York")
print(person.address.city) # "New York"
Enums and Literals
from enum import Enum
from typing import Literal
class Status(str, Enum):
PENDING = "pending"
APPROVED = "approved"
REJECTED = "rejected"
class Application(BaseModel):
applicant: str
status: Status # Must be one of enum values
priority: Literal["low", "medium", "high"] # Must be one of literals
generator = outlines.generate.json(model, Application)
app = generator("Generate application")
print(app.status) # Status.PENDING (or APPROVED/REJECTED)
Common Patterns
Pattern 1: Data Extraction
from pydantic import BaseModel
import outlines
class CompanyInfo(BaseModel):
name: str
founded_year: int
industry: str
employees: int
model = outlines.models.transformers("microsoft/Phi-3-mini-4k-instruct")
generator = outlines.generate.json(model, CompanyInfo)
text = """
Apple Inc. was founded in 1976 in the technology industry.
The company employs approximately 164,000 people worldwide.
"""
prompt = f"Extract company information:\n{text}\n\nCompany:"
company = generator(prompt)
print(f"Name: {company.name}")
print(f"Founded: {company.founded_year}")
print(f"Industry: {company.industry}")
print(f"Employees: {company.employees}")
Pattern 2: Classification
from typing import Literal
import outlines
model = outlines.models.transformers("microsoft/Phi-3-mini-4k-instruct")
# Binary classification
generator = outlines.generate.choice(model, ["spam", "not_spam"])
result = generator("Email: Buy now! 50% off!")
# Multi-class classification
categories = ["technology", "business", "sports", "entertainment"]
category_gen = outlines.generate.choice(model, categories)
category = category_gen("Article: Apple announces new iPhone...")
# With confidence
class Classification(BaseModel):
label: Literal["positive", "negative", "neutral"]
confidence: float
classifier = outlines.generate.json(model, Classification)
result = classifier("Review: This product is okay, nothing special")
Pattern 3: Structured Forms
class UserProfile(BaseModel):
full_name: str
age: int
email: str
phone: str
country: str
interests: list[str]
model = outlines.models.transformers("microsoft/Phi-3-mini-4k-instruct")
generator = outlines.generate.json(model, UserProfile)
prompt = """
Extract user profile from:
Name: Alice Johnson
Age: 28
Email: [email protected]
Phone: 555-0123
Country: USA
Interests: hiking, photography, cooking
"""
profile = generator(prompt)
print(profile.full_name)
print(profile.interests) # ["hiking", "photography", "cooking"]
Pattern 4: Multi-Entity Extraction
class Entity(BaseModel):
name: str
type: Literal["PERSON", "ORGANIZATION", "LOCATION"]
class DocumentEntities(BaseModel):
entities: list[Entity]
model = outlines.models.transformers("microsoft/Phi-3-mini-4k-instruct")
generator = outlines.generate.json(model, DocumentEntities)
text = "Tim Cook met with Satya Nadella at Microsoft headquarters in Redmond."
prompt = f"Extract entities from: {text}"
result = generator(prompt)
for entity in result.entities:
print(f"{entity.name} ({entity.type})")
Pattern 5: Code Generation
class PythonFunction(BaseModel):
function_name: str
parameters: list[str]
docstring: str
body: str
model = outlines.models.transformers("microsoft/Phi-3-mini-4k-instruct")
generator = outlines.generate.json(model, PythonFunction)
prompt = "Generate a Python function to calculate factorial"
func = generator(prompt)
print(f"def {func.function_name}({', '.join(func.parameters)}):")
print(f' """{func.docstring}"""')
print(f" {func.body}")
Pattern 6: Batch Processing
def batch_extract(texts: list[str], schema: type[BaseModel]):
"""Extract structured data from multiple texts."""
model = outlines.models.transformers("microsoft/Phi-3-mini-4k-instruct")
generator = outlines.generate.json(model, schema)
results = []
for text in texts:
result = generator(f"Extract from: {text}")
results.append(result)
return results
class Person(BaseModel):
name: str
age: int
texts = [
"John is 30 years old",
"Alice is 25 years old",
"Bob is 40 years old"
]
people = batch_extract(texts, Person)
for person in people:
print(f"{person.name}: {person.age}")
Backend Configuration
Transformers
import outlines
# Basic usage
model = outlines.models.transformers("microsoft/Phi-3-mini-4k-instruct")
# GPU configuration
model = outlines.models.transformers(
"microsoft/Phi-3-mini-4k-instruct",
device="cuda",
model_kwargs={"torch_dtype": "float16"}
)
# Popular models
model = outlines.models.transformers("meta-llama/Llama-3.1-8B-Instruct")
model = outlines.models.transformers("mistralai/Mistral-7B-Instruct-v0.3")
model = outlines.models.transformers("Qwen/Qwen2.5-7B-Instruct")
llama.cpp
# Load GGUF model
model = outlines.models.llamacpp(
"./models/llama-3.1-8b.Q4_K_M.gguf",
n_ctx=4096, # Context window
n_gpu_layers=35, # GPU layers
n_threads=8 # CPU threads
)
# Full GPU offload
model = outlines.models.llamacpp(
"./models/model.gguf",
n_gpu_layers=-1 # All layers on GPU
)
vLLM (Production)
# Single GPU
model = outlines.models.vllm("meta-llama/Llama-3.1-8B-Instruct")
# Multi-GPU
model = outlines.models.vllm(
"meta-llama/Llama-3.1-70B-Instruct",
tensor_parallel_size=4 # 4 GPUs
)
# With quantization
model = outlines.models.vllm(
"meta-llama/Llama-3.1-8B-Instruct",
quantization="awq" # Or "gptq"
)
Best Practices
1. Use Specific Types
# ✅ Good: Specific types
class Product(BaseModel):
name: str
price: float # Not str
quantity: int # Not str
in_stock: bool # Not str
# ❌ Bad: Everything as string
class Product(BaseModel):
name: str
price: str # Should be float
quantity: str # Should be int
2. Add Constraints
from pydantic import Field
# ✅ Good: With constraints
class User(BaseModel):
name: str = Field(min_length=1, max_length=100)
age: int = Field(ge=0, le=120)
email: str = Field(pattern=r"^[\w\.-]+@[\w\.-]+\.\w+$")
# ❌ Bad: No constraints
class User(BaseModel):
name: str
age: int
email: str
3. Use Enums for Categories
# ✅ Good: Enum for fixed set
class Priority(str, Enum):
LOW = "low"
MEDIUM = "medium"
HIGH = "high"
class Task(BaseModel):
title: str
priority: Priority
# ❌ Bad: Free-form string
class Task(BaseModel):
title: str
priority: str # Can be anything
4. Provide Context in Prompts
# ✅ Good: Clear context
prompt = """
Extract product information from the following text.
Text: iPhone 15 Pro costs $999 and is currently in stock.
Product:
"""
# ❌ Bad: Minimal context
prompt = "iPhone 15 Pro costs $999 and is currently in stock."
5. Handle Optional Fields
from typing import Optional
# ✅ Good: Optional fields for incomplete data
class Article(BaseModel):
title: str # Required
author: Optional[str] = None # Optional
date: Optional[str] = None # Optional
tags: list[str] = [] # Default empty list
# Can succeed even if author/date missing
Comparison to Alternatives
| Feature | Outlines | Instructor | Guidance | LMQL |
|---|---|---|---|---|
| Pydantic Support | ✅ Native | ✅ Native | ❌ No | ❌ No |
| JSON Schema | ✅ Yes | ✅ Yes | ⚠️ Limited | ✅ Yes |
| Regex Constraints | ✅ Yes | ❌ No | ✅ Yes | ✅ Yes |
| Local Models | ✅ Full | ⚠️ Limited | ✅ Full | ✅ Full |
| API Models | ⚠️ Limited | ✅ Full | ✅ Full | ✅ Full |
| Zero Overhead | ✅ Yes | ❌ No | ⚠️ Partial | ✅ Yes |
| Automatic Retrying | ❌ No | ✅ Yes | ❌ No | ❌ No |
| Learning Curve | Low | Low | Low | High |
When to choose Outlines:
- Using local models (Transformers, llama.cpp, vLLM)
- Need maximum inference speed
- Want Pydantic model support
- Require zero-overhead structured generation
- Control token sampling process
When to choose alternatives:
- Instructor: Need API models with automatic retrying
- Guidance: Need token healing and complex workflows
- LMQL: Prefer declarative query syntax
Performance Characteristics
Speed:
- Zero overhead: Structured generation as fast as unconstrained
- Fast-forward optimization: Skips deterministic tokens
- 1.2-2x faster than post-generation validation approaches
Memory:
- FSM compiled once per schema (cached)
- Minimal runtime overhead
- Efficient with vLLM for high throughput
Accuracy:
- 100% valid outputs (guaranteed by FSM)
- No retry loops needed
- Deterministic token filtering
Resources
- Documentation: https://outlines-dev.github.io/outlines
- GitHub: https://github.com/outlines-dev/outlines (8k+ stars)
- Discord: https://discord.gg/R9DSu34mGd
- Blog: https://blog.dottxt.co
See Also
references/json_generation.md- Comprehensive JSON and Pydantic patternsreferences/backends.md- Backend-specific configurationreferences/examples.md- Production-ready examples
GitHub Repository
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that enables fast structured generation with JSON/regex outputs and constrained decoding. It's ideal for agentic workflows with tool calls and multi-turn conversations, offering significantly faster inference through RadixAttention prefix caching. Use it when you need production-scale performance with shared context across requests.
guidance
MetaThe Guidance skill enables developers to control LLM output using regex and grammars to guarantee valid JSON, XML, or code generation. It enforces structured formats and builds multi-step workflows, reducing latency compared to traditional prompting. Use it when you need to prevent invalid outputs through grammatical constraints and ensure syntactically correct results.
serving-llms-vllm
DevelopmentThis Claude Skill deploys high-throughput LLM APIs using vLLM's PagedAttention and continuous batching, ideal for production serving with optimized latency and GPU memory efficiency. It provides OpenAI-compatible endpoints while supporting quantization methods and tensor parallelism. Use it when you need to serve models with limited GPU resources or maximize inference throughput.
instructor
TestingThe Instructor skill provides reliable structured data extraction from LLM responses using Pydantic validation and automatic retry logic. It enables type-safe JSON parsing, streams partial results, and supports multiple LLM providers with a consistent API. Use it when you need to enforce schemas and validate outputs from models like OpenAI or Anthropic.
