llama-cpp
About
llama-cpp enables LLM inference on CPU, Apple Silicon, and consumer GPUs without requiring NVIDIA hardware or CUDA. It's ideal for edge deployment, Macs, or AMD/Intel systems, offering GGUF quantization for reduced memory and significant speedups over PyTorch on CPU. Use this when you need to run models on non-NVIDIA hardware or in resource-constrained environments.
Quick Install
Claude Code
Recommended/plugin add https://github.com/davila7/claude-code-templatesgit clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/llama-cppCopy and paste this command in Claude Code to install this skill
Documentation
llama.cpp
Pure C/C++ LLM inference with minimal dependencies, optimized for CPUs and non-NVIDIA hardware.
When to use llama.cpp
Use llama.cpp when:
- Running on CPU-only machines
- Deploying on Apple Silicon (M1/M2/M3/M4)
- Using AMD or Intel GPUs (no CUDA)
- Edge deployment (Raspberry Pi, embedded systems)
- Need simple deployment without Docker/Python
Use TensorRT-LLM instead when:
- Have NVIDIA GPUs (A100/H100)
- Need maximum throughput (100K+ tok/s)
- Running in datacenter with CUDA
Use vLLM instead when:
- Have NVIDIA GPUs
- Need Python-first API
- Want PagedAttention
Quick start
Installation
# macOS/Linux
brew install llama.cpp
# Or build from source
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
make
# With Metal (Apple Silicon)
make LLAMA_METAL=1
# With CUDA (NVIDIA)
make LLAMA_CUDA=1
# With ROCm (AMD)
make LLAMA_HIP=1
Download model
# Download from HuggingFace (GGUF format)
huggingface-cli download \
TheBloke/Llama-2-7B-Chat-GGUF \
llama-2-7b-chat.Q4_K_M.gguf \
--local-dir models/
# Or convert from HuggingFace
python convert_hf_to_gguf.py models/llama-2-7b-chat/
Run inference
# Simple chat
./llama-cli \
-m models/llama-2-7b-chat.Q4_K_M.gguf \
-p "Explain quantum computing" \
-n 256 # Max tokens
# Interactive chat
./llama-cli \
-m models/llama-2-7b-chat.Q4_K_M.gguf \
--interactive
Server mode
# Start OpenAI-compatible server
./llama-server \
-m models/llama-2-7b-chat.Q4_K_M.gguf \
--host 0.0.0.0 \
--port 8080 \
-ngl 32 # Offload 32 layers to GPU
# Client request
curl http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "llama-2-7b-chat",
"messages": [{"role": "user", "content": "Hello!"}],
"temperature": 0.7,
"max_tokens": 100
}'
Quantization formats
GGUF format overview
| Format | Bits | Size (7B) | Speed | Quality | Use Case |
|---|---|---|---|---|---|
| Q4_K_M | 4.5 | 4.1 GB | Fast | Good | Recommended default |
| Q4_K_S | 4.3 | 3.9 GB | Faster | Lower | Speed critical |
| Q5_K_M | 5.5 | 4.8 GB | Medium | Better | Quality critical |
| Q6_K | 6.5 | 5.5 GB | Slower | Best | Maximum quality |
| Q8_0 | 8.0 | 7.0 GB | Slow | Excellent | Minimal degradation |
| Q2_K | 2.5 | 2.7 GB | Fastest | Poor | Testing only |
Choosing quantization
# General use (balanced)
Q4_K_M # 4-bit, medium quality
# Maximum speed (more degradation)
Q2_K or Q3_K_M
# Maximum quality (slower)
Q6_K or Q8_0
# Very large models (70B, 405B)
Q3_K_M or Q4_K_S # Lower bits to fit in memory
Hardware acceleration
Apple Silicon (Metal)
# Build with Metal
make LLAMA_METAL=1
# Run with GPU acceleration (automatic)
./llama-cli -m model.gguf -ngl 999 # Offload all layers
# Performance: M3 Max 40-60 tokens/sec (Llama 2-7B Q4_K_M)
NVIDIA GPUs (CUDA)
# Build with CUDA
make LLAMA_CUDA=1
# Offload layers to GPU
./llama-cli -m model.gguf -ngl 35 # Offload 35/40 layers
# Hybrid CPU+GPU for large models
./llama-cli -m llama-70b.Q4_K_M.gguf -ngl 20 # GPU: 20 layers, CPU: rest
AMD GPUs (ROCm)
# Build with ROCm
make LLAMA_HIP=1
# Run with AMD GPU
./llama-cli -m model.gguf -ngl 999
Common patterns
Batch processing
# Process multiple prompts from file
cat prompts.txt | ./llama-cli \
-m model.gguf \
--batch-size 512 \
-n 100
Constrained generation
# JSON output with grammar
./llama-cli \
-m model.gguf \
-p "Generate a person: " \
--grammar-file grammars/json.gbnf
# Outputs valid JSON only
Context size
# Increase context (default 512)
./llama-cli \
-m model.gguf \
-c 4096 # 4K context window
# Very long context (if model supports)
./llama-cli -m model.gguf -c 32768 # 32K context
Performance benchmarks
CPU performance (Llama 2-7B Q4_K_M)
| CPU | Threads | Speed | Cost |
|---|---|---|---|
| Apple M3 Max | 16 | 50 tok/s | $0 (local) |
| AMD Ryzen 9 7950X | 32 | 35 tok/s | $0.50/hour |
| Intel i9-13900K | 32 | 30 tok/s | $0.40/hour |
| AWS c7i.16xlarge | 64 | 40 tok/s | $2.88/hour |
GPU acceleration (Llama 2-7B Q4_K_M)
| GPU | Speed | vs CPU | Cost |
|---|---|---|---|
| NVIDIA RTX 4090 | 120 tok/s | 3-4× | $0 (local) |
| NVIDIA A10 | 80 tok/s | 2-3× | $1.00/hour |
| AMD MI250 | 70 tok/s | 2× | $2.00/hour |
| Apple M3 Max (Metal) | 50 tok/s | ~Same | $0 (local) |
Supported models
LLaMA family:
- Llama 2 (7B, 13B, 70B)
- Llama 3 (8B, 70B, 405B)
- Code Llama
Mistral family:
- Mistral 7B
- Mixtral 8x7B, 8x22B
Other:
- Falcon, BLOOM, GPT-J
- Phi-3, Gemma, Qwen
- LLaVA (vision), Whisper (audio)
Find models: https://huggingface.co/models?library=gguf
References
- Quantization Guide - GGUF formats, conversion, quality comparison
- Server Deployment - API endpoints, Docker, monitoring
- Optimization - Performance tuning, hybrid CPU+GPU
Resources
- GitHub: https://github.com/ggerganov/llama.cpp
- Models: https://huggingface.co/models?library=gguf
- Discord: https://discord.gg/llama-cpp
GitHub Repository
Related Skills
quantizing-models-bitsandbytes
OtherThis skill quantizes LLMs to 8-bit or 4-bit precision using bitsandbytes, reducing memory usage by 50-75% with minimal accuracy loss for GPU-constrained environments. It supports multiple formats (INT8, NF4, FP4) and enables QLoRA training and 8-bit optimizers. Use it with HuggingFace Transformers when you need to fit larger models into limited memory or accelerate inference.
sglang
MetaSGLang is a high-performance LLM serving framework that enables fast structured generation with JSON/regex outputs and constrained decoding. It's ideal for agentic workflows with tool calls and multi-turn conversations, offering significantly faster inference through RadixAttention prefix caching. Use it when you need production-scale performance with shared context across requests.
hqq-quantization
OtherHQQ enables fast, calibration-free quantization of LLMs down to 2-bit precision without needing a dataset. It's ideal for rapid quantization workflows and for deployment with vLLM or HuggingFace Transformers. Key advantages include significantly faster quantization than methods like GPTQ and support for fine-tuning quantized models.
tensorrt-llm
OtherTensorRT-LLM is an NVIDIA-optimized library for deploying LLMs on NVIDIA GPUs, delivering up to 100x faster inference than PyTorch. Use it for production serving where you need maximum throughput, low latency, and support for features like quantization (FP8/INT4), in-flight batching, and multi-GPU scaling.
