ai-collaboration-standards
关于
This skill ensures evidence-based AI responses by requiring explicit certainty tags and source citations when analyzing code or making recommendations. It prevents hallucinations by distinguishing confirmed facts from inferences and assumptions. Use it during code analysis, suggestion generation, or whenever confidence level needs clarification.
快速安装
Claude Code
推荐/plugin add https://github.com/AsiaOstrich/universal-dev-skillsgit clone https://github.com/AsiaOstrich/universal-dev-skills.git ~/.claude/skills/ai-collaboration-standards在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
AI Collaboration Standards
This skill ensures AI assistants provide accurate, evidence-based responses without hallucination.
Quick Reference
Certainty Tags
| Tag | Use When |
|---|---|
[Confirmed] / [已確認] | Direct evidence from code/docs |
[Inferred] / [推論] | Logical deduction from evidence |
[Assumption] / [假設] | Based on common patterns (needs verification) |
[Unknown] / [未知] | Information not available |
[Need Confirmation] / [待確認] | Requires user clarification |
Source Types
| Source Type | Tag | Reliability |
|---|---|---|
| Project Code | [Source: Code] | ⭐⭐⭐⭐⭐ Highest |
| Project Docs | [Source: Docs] | ⭐⭐⭐⭐ High |
| External Docs | [Source: External] | ⭐⭐⭐⭐ High |
| Web Search | [Source: Search] | ⭐⭐⭐ Medium |
| AI Knowledge | [Source: Knowledge] | ⭐⭐ Low |
| User Provided | [Source: User] | ⭐⭐⭐ Medium |
Core Rules
- Evidence-Based Only: Only analyze content that has been explicitly read
- Cite Sources: Include file path and line number for code references
- Classify Certainty: Tag all statements with certainty level
- Always Recommend: When presenting options, include a recommended choice with reasoning
Detailed Guidelines
For complete standards, see:
Examples
✅ Correct Response
[Confirmed] src/auth/service.ts:45 - JWT validation uses 'jsonwebtoken' library
[Inferred] Based on repository pattern in src/repositories/, likely using dependency injection
[Need Confirmation] Should the new feature support multi-tenancy?
❌ Incorrect Response
The system uses Redis for caching (code not reviewed)
The UserService should have an authenticate() method (API not verified)
✅ Correct Option Presentation
There are three options:
1. Redis caching
2. In-memory caching
3. File-based caching
**Recommended: Option 1 (Redis)**: Given the project already has Redis infrastructure
and needs cross-instance cache sharing, Redis is the most suitable choice.
❌ Incorrect Option Presentation
There are three options:
1. Redis caching
2. In-memory caching
3. File-based caching
Please choose one.
Checklist
Before making any statement:
- Source Verified - Have I read the actual file/document?
- Source Type Tagged - Did I specify
[Source: Code],[Source: External], etc.? - Reference Cited - Did I include file path and line number?
- Certainty Classified - Did I tag as
[Confirmed],[Inferred], etc.? - No Fabrication - Did I avoid inventing APIs, configs, or requirements?
- Recommendation Included - When presenting options, did I include a recommended choice?
Configuration Detection
This skill supports project-specific language configuration for certainty tags.
Detection Order
- Check
CONTRIBUTING.mdfor "Certainty Tag Language" section - If found, use the specified language (English / 中文)
- If not found, default to English tags
First-Time Setup
If no configuration found and context is unclear:
- Ask the user: "This project hasn't configured certainty tag language preference. Which would you like to use? (English / 中文)"
- After user selection, suggest documenting in
CONTRIBUTING.md:
## Certainty Tag Language
This project uses **[English / 中文]** certainty tags.
<!-- Options: English | 中文 -->
Configuration Example
In project's CONTRIBUTING.md:
## Certainty Tag Language
This project uses **English** certainty tags.
### Tag Reference
- [Confirmed] - Direct evidence from code/docs
- [Inferred] - Logical deduction from evidence
- [Assumption] - Based on common patterns
- [Unknown] - Information not available
- [Need Confirmation] - Requires user clarification
License: CC BY 4.0 | Source: universal-doc-standards
GitHub 仓库
相关推荐技能
content-collections
元Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
llamaguard
其他LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。
