MCP HubMCP Hub
返回技能列表

Generating Test Reports

jeremylongshore
更新于 Today
68 次查看
1,053
135
1,053
在 GitHub 上查看
pdfaitestingdata

关于

This skill generates comprehensive test reports by aggregating results from various frameworks and calculating key metrics like coverage and pass rates. It provides trend analysis and outputs reports in multiple formats (HTML, PDF, JSON) for stakeholders. Use it when you need a test report, coverage analysis, or historical comparison of test runs.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus-skills
Git 克隆备选方式
git clone https://github.com/jeremylongshore/claude-code-plugins-plus-skills.git ~/.claude/skills/Generating Test Reports

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Overview

This skill empowers Claude to create detailed test reports, providing insights into code coverage, test performance trends, and failure analysis. It supports multiple output formats for easy sharing and analysis.

How It Works

  1. Aggregating Results: Collects test results from various test frameworks used in the project.
  2. Calculating Metrics: Computes coverage metrics, pass rates, test duration, and identifies trends.
  3. Generating Report: Produces comprehensive reports in HTML, PDF, or JSON format based on the user's preference.

When to Use This Skill

This skill activates when you need to:

  • Generate a test report after a test run.
  • Analyze code coverage to identify areas needing more testing.
  • Identify trends in test performance over time.

Examples

Example 1: Generating an HTML Test Report

User request: "Generate an HTML test report showing code coverage and failure analysis."

The skill will:

  1. Aggregate test results from all available frameworks.
  2. Calculate code coverage and identify failing tests.
  3. Generate an HTML report summarizing the findings.

Example 2: Comparing Test Results Over Time

User request: "Create a report comparing the test results from the last two CI/CD runs."

The skill will:

  1. Retrieve test results from the two most recent CI/CD runs.
  2. Compare key metrics like pass rate and duration.
  3. Generate a report highlighting any regressions or improvements.

Best Practices

  • Clarity: Specify the desired output format (HTML, PDF, JSON) for the report.
  • Scope: Define the scope of the report (e.g., specific test suite, time period).
  • Context: Provide context about the project and testing environment to improve accuracy.

Integration

This skill can integrate with CI/CD pipelines to automatically generate and share test reports after each build. It also works well with other analysis plugins to provide more comprehensive insights.

GitHub 仓库

jeremylongshore/claude-code-plugins-plus-skills
路径: backups/plugin-enhancements/plugin-backups/test-report-generator_20251020_002708/skills/skill-adapter
aiautomationclaude-codedevopsmarketplacemcp

相关推荐技能

content-collections

Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能

llamaguard

其他

LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。

查看技能