MCP HubMCP Hub
返回技能列表

github-integration

DNYoussef
更新于 Yesterday
40 次查看
9
2
9
在 GitHub 上查看
aimcp

关于

This GitHub integration skill coordinates GitHub-focused tasks like PR reviews, multi-repo operations, and project management through MCP tool integrations. It provides structured routing with safety guardrails and standardized procedures for consistent GitHub automation. Use it when you need to automate or coordinate multiple GitHub workflows with built-in compliance and tool coordination.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/DNYoussef/context-cascade
Git 克隆备选方式
git clone https://github.com/DNYoussef/context-cascade.git ~/.claude/skills/github-integration

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

L1 Improvement

  • Added a centralized SOP in Prompt Architect style with Skill Forge guardrails for all GitHub subskills.
  • Documented routing, MCP tool expectations, and confidence ceilings.
  • Introduced structure-first documentation and memory tagging.

STANDARD OPERATING PROCEDURE

Purpose

Route and coordinate GitHub tasks across subskills (PR review, multi-repo, project management, releases, workflow automation) with consistent SOPs and MCP integrations.

Trigger Conditions

  • Positive: GitHub PR reviews, multi-repo coordination, project board automation, release orchestration, or workflow automation requests.
  • Negative: non-GitHub SCM or local-only tasks; route to platform-specific skills.

Guardrails

  • Structure-first docs: SKILL, README, MCP guide kept current.
  • Explicit routing to subskills; do not mix flows without stating boundaries.
  • Enforce least-privilege credentials; never log secrets.
  • Confidence ceilings required on analyses and automation changes.
  • Memory tagging for runs and auditability.

Execution Phases

  1. Intent & Routing – Identify which subskill applies; confirm repository scope, permissions, and risk level.
  2. Setup – Ensure MCP servers (Claude Flow, Flow Nexus if used) are configured; validate tokens; set WHO/WHY/PROJECT/WHEN tags.
  3. Plan – Map actions, safety checks, and rollback; align with subskill SOP.
  4. Execute – Run subskill workflows (review/multi-repo/project/release/actions) with logging and dry-runs where possible.
  5. Validate – Verify results (tests, checks, approvals) and ensure no secrets leaked.
  6. Deliver – Summarize actions, outputs, risks, and confidence line; archive in memory.

Output Format

  • Routed subskill(s), repo scope, MCP servers used, and actions taken.
  • Results/metrics, risks, and follow-ups.
  • Confidence: X.XX (ceiling: TYPE Y.YY) and memory namespace.

Validation Checklist

  • Correct subskill chosen; permissions confirmed.
  • MCP servers configured; secrets protected.
  • Actions logged with rollback/cleanup notes.
  • Memory tagged; confidence ceiling declared.

Integration

  • Subskills: PR review, multi-repo, project management, release management, workflow automation folders under this skill.
  • MCP: see MCP-INTEGRATION-GUIDE.md for commands; tag sessions with WHO/WHY/PROJECT/WHEN.
  • Memory MCP: skills/tooling/github-integration/{project}/{timestamp} for runs.

Confidence: 0.70 (ceiling: inference 0.70) – SOP aligns GitHub integrations with Prompt Architect and Skill Forge guardrails.

GitHub 仓库

DNYoussef/context-cascade
路径: skills/tooling/github-integration

相关推荐技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能

llamaguard

其他

LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。

查看技能

langchain

LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。

查看技能