MCP HubMCP Hub
返回技能列表

Creating GitHub Issues from Web Research

jeremylongshore
更新于 Today
185 次查看
1,053
135
1,053
在 GitHub 上查看
aiautomation

关于

This skill enables Claude to research a topic via web search and automatically generate a well-structured GitHub issue from the findings. It's designed for developers who need to convert research into actionable, trackable tasks for their team. Trigger it by asking Claude to research a topic and create a corresponding ticket.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus-skills
Git 克隆备选方式
git clone https://github.com/jeremylongshore/claude-code-plugins-plus-skills.git ~/.claude/skills/Creating GitHub Issues from Web Research

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Overview

This skill empowers Claude to streamline the research-to-implementation workflow. By integrating web search with GitHub issue creation, Claude can efficiently convert research findings into trackable tasks for development teams.

How It Works

  1. Web Search: Claude utilizes its web search capabilities to gather information on the specified topic.
  2. Information Extraction: The plugin extracts relevant details, key findings, and supporting evidence from the search results.
  3. GitHub Issue Creation: A new GitHub issue is created with a clear title, a summary of the research, key recommendations, and links to the original sources.

When to Use This Skill

This skill activates when you need to:

  • Investigate a technical topic and create an implementation ticket.
  • Track security vulnerabilities and generate a security issue with remediation steps.
  • Research competitor features and create a feature request ticket.

Examples

Example 1: Researching Security Best Practices

User request: "research Docker security best practices and create a ticket in myorg/backend"

The skill will:

  1. Search the web for Docker security best practices.
  2. Extract key recommendations, security vulnerabilities, and mitigation strategies.
  3. Create a GitHub issue in the specified repository with a summary of the findings, a checklist of best practices, and links to relevant resources.

Example 2: Investigating API Rate Limiting

User request: "find articles about API rate limiting, create issue with label performance"

The skill will:

  1. Search the web for articles and documentation on API rate limiting.
  2. Extract different rate limiting techniques, their pros and cons, and implementation examples.
  3. Create a GitHub issue with the "performance" label, summarizing the findings and providing links to the source articles.

Best Practices

  • Specify Repository: When creating issues for a specific project, explicitly mention the repository name to ensure the issue is created in the correct location.
  • Use Labels: Add relevant labels to the issue to categorize it appropriately and facilitate issue tracking.
  • Provide Context: Include sufficient context in your request to guide the web search and ensure the generated issue contains the most relevant information.

Integration

This skill seamlessly integrates with Claude's web search Skill and requires authentication with a GitHub account. It can be used in conjunction with other skills to further automate development workflows.

GitHub 仓库

jeremylongshore/claude-code-plugins-plus-skills
路径: backups/plugin-enhancements/plugin-backups/web-to-github-issue_20251020_081058/skills/skill-adapter
aiautomationclaude-codedevopsmarketplacemcp

相关推荐技能

content-collections

Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能

llamaguard

其他

LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。

查看技能