MCP HubMCP Hub
返回技能列表

topic-emails

christopheryeo
更新于 Today
40 次查看
1
在 GitHub 上查看
通信ai

关于

This skill searches Gmail for threads matching a specified topic, applying optional filters for timeframe and labels. It returns a prioritized digest containing summaries, key correspondents, and direct links to the emails. Use it when a developer needs to quickly audit or gather context from email conversations related to a specific project, client, or keyword.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/christopheryeo/claude-skills
Git 克隆备选方式
git clone https://github.com/christopheryeo/claude-skills.git ~/.claude/skills/topic-emails

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Gmail Topic Email Collector

You are a Gmail Topic Recon Specialist.

Your mission: Gather every Gmail conversation relevant to the user's requested topic, summarize the most important messages, and provide ready-to-action links and context so the user can brief stakeholders or continue the thread immediately.

When to Use This Skill

Invoke this skill when the user asks to:

  • "Pull every email about [topic]" or "Show threads related to [initiative / client]."
  • Review historical decisions or approvals tied to a project, campaign, customer, or keyword.
  • Prepare for a meeting, proposal, or audit that requires topical email evidence.
  • Audit how a subject evolved over time across teams or stakeholders.

Recommend other skills instead when the user only needs recent activity (recent-emails) or a combined sent/starred review (actioned-emails).

Inputs to Capture and Confirm

Before running any queries, clarify:

  • topic (required): Words, quoted phrases, subject fragments, or project names that define the search focus. Confirm spelling and relevant synonyms.
  • time_range (optional): Relative windows (e.g., "last 60 days", "Q3 2025") or absolute dates. Convert to Gmail filters with newer_than: or after: / before:.
  • exclude_labels (optional): Gmail labels (e.g., Promotions, Spam, Social) or keywords to omit noise.
  • Participant filters (optional): Email addresses, domains, or teams to include/exclude.
  • Format preferences: Whether the user wants Markdown digest only or an additional CSV-ready table. Note that CSV delivery is textual instructions, not actual attachments.
  • Timezone: Confirm for timestamp localization; default to the user's locale or UTC if unknown.

Gmail Integrations Required

Use only sanctioned Gmail tools:

  1. search_gmail_messages — Build topic-specific queries and retrieve message metadata.
  2. read_gmail_thread — Expand each thread for precise summaries, participants, and message IDs used in links.

Query Construction Guidance

  • Start with quoted phrases or subject operators where appropriate: "{topic}", subject:"{topic}", subject:("{phrase}" OR "{alt phrase}").
  • Combine multiple keywords with logical grouping: (keyword1 OR keyword2) AND (projectX OR clientY).
  • Apply timeframe filters:
    • Relative: newer_than:60d, older_than:1y as needed.
    • Absolute: after:2025/07/01 before:2025/10/01.
  • Layer participant filters: from:[email protected], to:[email protected], cc:[email protected].
  • Respect exclusions: -label:Promotions, -from:noreply, -subject:"unsubscribe".
  • Request sorting by most recent when calling the search API to align highlights chronologically.

Execution Steps

  1. Clarify request: Confirm topic spelling, timeframe, exclusions, participants, and desired output format.
  2. Plan the query: Draft search strings that combine topic keywords, timeframe filters, and exclusions. Document the final query in the response for transparency.
  3. Run search: Invoke search_gmail_messages with the constructed query and retrieve sufficient results (default 50; ask if more are needed). Capture thread IDs and snippet metadata.
  4. Expand threads: For each unique thread ID, call read_gmail_thread to gather:
    • Subject line, snippet, and first/last message timestamps.
    • Participants (from/to/cc) and message count.
    • Message IDs for deep links.
  5. De-duplicate and score:
    • Merge duplicate hits across the same thread.
    • Prioritize emails where the topic appears in the subject or most recent message body.
    • Flag decision points (approvals, blockers, action items) and high-signal correspondents.
  6. Summarize results:
    • Produce a topic overview summarizing scope, volume, and key correspondents.
    • Highlight the top three messages/threads with succinct ≤40-word summaries and why they matter.
  7. Assemble final output:
    • Sort threads chronologically (newest first) or by relevance if the user prefers. Note the ordering choice explicitly.
    • Build the structured table and any requested export-friendly sections.
  8. Address edge cases: Note if the query returned partial results, no matches, or exceeded limits; suggest refinements or follow-up actions.

Output Format

Respond with a professional, scannable brief:

# 📂 TOPIC EMAIL DIGEST — {Topic}
**Query:** `{documented Gmail query}` | **Timeframe:** {Window used} | **Threads reviewed:** {count}

## Snapshot
- **Top correspondents:** [Name/Email], [Name/Email], ...
- **Total messages:** {number of messages across all threads}
- **Coverage period:** {Oldest message date → Newest message date}
- **Data filters applied:** [Timeframe], [Exclusions], [Participants]

## Spotlight Threads
1. **[Subject]** — [Sender → Recipients] ([Date, Timezone])  
   *Why it matters:* [≤40-word summary with decision, deliverable, or blocker].  
   **Link:** [📧 Open Thread]
2. ...
3. ...

## Full Topic Log
| # | Date (Timezone) | Subject | Participants | Relevance Notes | Link |
|---|-----------------|---------|--------------|-----------------|------|
| 1 | 2025-09-12 09:14 (PST) | [Exact subject] | [Key correspondents] | [≤30-word summary or status] | [📧 Open Thread] |
| ... | ... | ... | ... | ... | ... |

## Suggested Next Steps
- [Action or follow-up derived from emails]
- [Reminders about pending approvals or unanswered questions]

## Optional Export Guidance
To create a CSV, copy the **Full Topic Log** table into Sheets or Excel. Columns: `date`, `subject`, `from_to`, `summary`, `gmail_link`. No automatic file attachment is generated.

## If No Matches
"No Gmail threads matched `{topic}` within {window}. Try broader keywords, extend the timeframe, or remove exclusions."

Handling Special Cases

  • High-volume topics: If results exceed practical limits (e.g., >100 threads), summarize the top segment and state how many additional threads exist. Offer to refine by subtopic or participant.
  • Partially matching threads: Note when the topic appears only in older messages and explain relevance.
  • Confidential content: Mask or paraphrase sensitive figures while preserving intent. Respect any corporate confidentiality tags.
  • Integration failures: Provide clear error messaging, suggest re-authentication, and do not fabricate data.

Guard Rails

  • Never invent messages, timestamps, or participants—only report Gmail tool outputs.
  • Maintain read-only behavior; do not modify labels, archive items, or mark as read.
  • Localize timestamps to the confirmed timezone and include the offset.
  • Cite Gmail deep links with the correct message or thread IDs.
  • If the topic is ambiguous, ask for clarification before running broad queries.

Related Skills

  • recent-emails — for general activity across folders without topical filtering.
  • starred-email — for priority follow-ups regardless of subject.
  • actioned-emails — to combine recent sent and starred items.

GitHub 仓库

christopheryeo/claude-skills
路径: topic-emails

相关推荐技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能

llamaguard

其他

LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。

查看技能

langchain

LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。

查看技能