serving-llms-vllm
关于
This Claude Skill serves LLMs with high throughput using vLLM's PagedAttention and continuous batching. It's ideal for deploying production LLM APIs, optimizing inference performance, or serving models with limited GPU memory. The skill supports OpenAI-compatible endpoints, multiple quantization methods, and tensor parallelism.
技能文档
vLLM - High-Performance LLM Serving
Quick start
vLLM achieves 24x higher throughput than standard transformers through PagedAttention (block-based KV cache) and continuous batching (mixing prefill/decode requests).
Installation:
pip install vllm
Basic offline inference:
from vllm import LLM, SamplingParams
llm = LLM(model="meta-llama/Llama-3-8B-Instruct")
sampling = SamplingParams(temperature=0.7, max_tokens=256)
outputs = llm.generate(["Explain quantum computing"], sampling)
print(outputs[0].outputs[0].text)
OpenAI-compatible server:
vllm serve meta-llama/Llama-3-8B-Instruct
# Query with OpenAI SDK
python -c "
from openai import OpenAI
client = OpenAI(base_url='http://localhost:8000/v1', api_key='EMPTY')
print(client.chat.completions.create(
model='meta-llama/Llama-3-8B-Instruct',
messages=[{'role': 'user', 'content': 'Hello!'}]
).choices[0].message.content)
"
Common workflows
Workflow 1: Production API deployment
Copy this checklist and track progress:
Deployment Progress:
- [ ] Step 1: Configure server settings
- [ ] Step 2: Test with limited traffic
- [ ] Step 3: Enable monitoring
- [ ] Step 4: Deploy to production
- [ ] Step 5: Verify performance metrics
Step 1: Configure server settings
Choose configuration based on your model size:
# For 7B-13B models on single GPU
vllm serve meta-llama/Llama-3-8B-Instruct \
--gpu-memory-utilization 0.9 \
--max-model-len 8192 \
--port 8000
# For 30B-70B models with tensor parallelism
vllm serve meta-llama/Llama-2-70b-hf \
--tensor-parallel-size 4 \
--gpu-memory-utilization 0.9 \
--quantization awq \
--port 8000
# For production with caching and metrics
vllm serve meta-llama/Llama-3-8B-Instruct \
--gpu-memory-utilization 0.9 \
--enable-prefix-caching \
--enable-metrics \
--metrics-port 9090 \
--port 8000 \
--host 0.0.0.0
Step 2: Test with limited traffic
Run load test before production:
# Install load testing tool
pip install locust
# Create test_load.py with sample requests
# Run: locust -f test_load.py --host http://localhost:8000
Verify TTFT (time to first token) < 500ms and throughput > 100 req/sec.
Step 3: Enable monitoring
vLLM exposes Prometheus metrics on port 9090:
curl http://localhost:9090/metrics | grep vllm
Key metrics to monitor:
vllm:time_to_first_token_seconds- Latencyvllm:num_requests_running- Active requestsvllm:gpu_cache_usage_perc- KV cache utilization
Step 4: Deploy to production
Use Docker for consistent deployment:
# Run vLLM in Docker
docker run --gpus all -p 8000:8000 \
vllm/vllm-openai:latest \
--model meta-llama/Llama-3-8B-Instruct \
--gpu-memory-utilization 0.9 \
--enable-prefix-caching
Step 5: Verify performance metrics
Check that deployment meets targets:
- TTFT < 500ms (for short prompts)
- Throughput > target req/sec
- GPU utilization > 80%
- No OOM errors in logs
Workflow 2: Offline batch inference
For processing large datasets without server overhead.
Copy this checklist:
Batch Processing:
- [ ] Step 1: Prepare input data
- [ ] Step 2: Configure LLM engine
- [ ] Step 3: Run batch inference
- [ ] Step 4: Process results
Step 1: Prepare input data
# Load prompts from file
prompts = []
with open("prompts.txt") as f:
prompts = [line.strip() for line in f]
print(f"Loaded {len(prompts)} prompts")
Step 2: Configure LLM engine
from vllm import LLM, SamplingParams
llm = LLM(
model="meta-llama/Llama-3-8B-Instruct",
tensor_parallel_size=2, # Use 2 GPUs
gpu_memory_utilization=0.9,
max_model_len=4096
)
sampling = SamplingParams(
temperature=0.7,
top_p=0.95,
max_tokens=512,
stop=["</s>", "\n\n"]
)
Step 3: Run batch inference
vLLM automatically batches requests for efficiency:
# Process all prompts in one call
outputs = llm.generate(prompts, sampling)
# vLLM handles batching internally
# No need to manually chunk prompts
Step 4: Process results
# Extract generated text
results = []
for output in outputs:
prompt = output.prompt
generated = output.outputs[0].text
results.append({
"prompt": prompt,
"generated": generated,
"tokens": len(output.outputs[0].token_ids)
})
# Save to file
import json
with open("results.jsonl", "w") as f:
for result in results:
f.write(json.dumps(result) + "\n")
print(f"Processed {len(results)} prompts")
Workflow 3: Quantized model serving
Fit large models in limited GPU memory.
Quantization Setup:
- [ ] Step 1: Choose quantization method
- [ ] Step 2: Find or create quantized model
- [ ] Step 3: Launch with quantization flag
- [ ] Step 4: Verify accuracy
Step 1: Choose quantization method
- AWQ: Best for 70B models, minimal accuracy loss
- GPTQ: Wide model support, good compression
- FP8: Fastest on H100 GPUs
Step 2: Find or create quantized model
Use pre-quantized models from HuggingFace:
# Search for AWQ models
# Example: TheBloke/Llama-2-70B-AWQ
Step 3: Launch with quantization flag
# Using pre-quantized model
vllm serve TheBloke/Llama-2-70B-AWQ \
--quantization awq \
--tensor-parallel-size 1 \
--gpu-memory-utilization 0.95
# Results: 70B model in ~40GB VRAM
Step 4: Verify accuracy
Test outputs match expected quality:
# Compare quantized vs non-quantized responses
# Verify task-specific performance unchanged
When to use vs alternatives
Use vLLM when:
- Deploying production LLM APIs (100+ req/sec)
- Serving OpenAI-compatible endpoints
- Limited GPU memory but need large models
- Multi-user applications (chatbots, assistants)
- Need low latency with high throughput
Use alternatives instead:
- llama.cpp: CPU/edge inference, single-user
- HuggingFace transformers: Research, prototyping, one-off generation
- TensorRT-LLM: NVIDIA-only, need absolute maximum performance
- Text-Generation-Inference: Already in HuggingFace ecosystem
Common issues
Issue: Out of memory during model loading
Reduce memory usage:
vllm serve MODEL \
--gpu-memory-utilization 0.7 \
--max-model-len 4096
Or use quantization:
vllm serve MODEL --quantization awq
Issue: Slow first token (TTFT > 1 second)
Enable prefix caching for repeated prompts:
vllm serve MODEL --enable-prefix-caching
For long prompts, enable chunked prefill:
vllm serve MODEL --enable-chunked-prefill
Issue: Model not found error
Use --trust-remote-code for custom models:
vllm serve MODEL --trust-remote-code
Issue: Low throughput (<50 req/sec)
Increase concurrent sequences:
vllm serve MODEL --max-num-seqs 512
Check GPU utilization with nvidia-smi - should be >80%.
Issue: Inference slower than expected
Verify tensor parallelism uses power of 2 GPUs:
vllm serve MODEL --tensor-parallel-size 4 # Not 3
Enable speculative decoding for faster generation:
vllm serve MODEL --speculative-model DRAFT_MODEL
Advanced topics
Server deployment patterns: See references/server-deployment.md for Docker, Kubernetes, and load balancing configurations.
Performance optimization: See references/optimization.md for PagedAttention tuning, continuous batching details, and benchmark results.
Quantization guide: See references/quantization.md for AWQ/GPTQ/FP8 setup, model preparation, and accuracy comparisons.
Troubleshooting: See references/troubleshooting.md for detailed error messages, debugging steps, and performance diagnostics.
Hardware requirements
- Small models (7B-13B): 1x A10 (24GB) or A100 (40GB)
- Medium models (30B-40B): 2x A100 (40GB) with tensor parallelism
- Large models (70B+): 4x A100 (40GB) or 2x A100 (80GB), use AWQ/GPTQ
Supported platforms: NVIDIA (primary), AMD ROCm, Intel GPUs, TPUs
Resources
- Official docs: https://docs.vllm.ai
- GitHub: https://github.com/vllm-project/vllm
- Paper: "Efficient Memory Management for Large Language Model Serving with PagedAttention" (SOSP 2023)
- Community: https://discuss.vllm.ai
快速安装
/plugin add https://github.com/zechenzhangAGI/AI-research-SKILLs/tree/main/vllm在 Claude Code 中复制并粘贴此命令以安装该技能
GitHub 仓库
相关推荐技能
llamaguard
其他LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
langchain
元LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。
