huggingface-accelerate
关于
HuggingFace Accelerate provides the simplest API for adding distributed training to PyTorch scripts with just 4 lines of code. It offers a unified interface for multiple distributed training frameworks like DeepSpeed, FSDP, and DDP while handling automatic device placement and mixed precision. This makes it ideal for developers who want to quickly scale their PyTorch training across multiple GPUs or nodes without complex configuration.
技能文档
HuggingFace Accelerate - Unified Distributed Training
Quick start
Accelerate simplifies distributed training to 4 lines of code.
Installation:
pip install accelerate
Convert PyTorch script (4 lines):
import torch
+ from accelerate import Accelerator
+ accelerator = Accelerator()
model = torch.nn.Transformer()
optimizer = torch.optim.Adam(model.parameters())
dataloader = torch.utils.data.DataLoader(dataset)
+ model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
for batch in dataloader:
optimizer.zero_grad()
loss = model(batch)
- loss.backward()
+ accelerator.backward(loss)
optimizer.step()
Run (single command):
accelerate launch train.py
Common workflows
Workflow 1: From single GPU to multi-GPU
Original script:
# train.py
import torch
model = torch.nn.Linear(10, 2).to('cuda')
optimizer = torch.optim.Adam(model.parameters())
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32)
for epoch in range(10):
for batch in dataloader:
batch = batch.to('cuda')
optimizer.zero_grad()
loss = model(batch).mean()
loss.backward()
optimizer.step()
With Accelerate (4 lines added):
# train.py
import torch
from accelerate import Accelerator # +1
accelerator = Accelerator() # +2
model = torch.nn.Linear(10, 2)
optimizer = torch.optim.Adam(model.parameters())
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32)
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader) # +3
for epoch in range(10):
for batch in dataloader:
# No .to('cuda') needed - automatic!
optimizer.zero_grad()
loss = model(batch).mean()
accelerator.backward(loss) # +4
optimizer.step()
Configure (interactive):
accelerate config
Questions:
- Which machine? (single/multi GPU/TPU/CPU)
- How many machines? (1)
- Mixed precision? (no/fp16/bf16/fp8)
- DeepSpeed? (no/yes)
Launch (works on any setup):
# Single GPU
accelerate launch train.py
# Multi-GPU (8 GPUs)
accelerate launch --multi_gpu --num_processes 8 train.py
# Multi-node
accelerate launch --multi_gpu --num_processes 16 \
--num_machines 2 --machine_rank 0 \
--main_process_ip $MASTER_ADDR \
train.py
Workflow 2: Mixed precision training
Enable FP16/BF16:
from accelerate import Accelerator
# FP16 (with gradient scaling)
accelerator = Accelerator(mixed_precision='fp16')
# BF16 (no scaling, more stable)
accelerator = Accelerator(mixed_precision='bf16')
# FP8 (H100+)
accelerator = Accelerator(mixed_precision='fp8')
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
# Everything else is automatic!
for batch in dataloader:
with accelerator.autocast(): # Optional, done automatically
loss = model(batch)
accelerator.backward(loss)
Workflow 3: DeepSpeed ZeRO integration
Enable DeepSpeed ZeRO-2:
from accelerate import Accelerator
accelerator = Accelerator(
mixed_precision='bf16',
deepspeed_plugin={
"zero_stage": 2, # ZeRO-2
"offload_optimizer": False,
"gradient_accumulation_steps": 4
}
)
# Same code as before!
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
Or via config:
accelerate config
# Select: DeepSpeed → ZeRO-2
deepspeed_config.json:
{
"fp16": {"enabled": false},
"bf16": {"enabled": true},
"zero_optimization": {
"stage": 2,
"offload_optimizer": {"device": "cpu"},
"allgather_bucket_size": 5e8,
"reduce_bucket_size": 5e8
}
}
Launch:
accelerate launch --config_file deepspeed_config.json train.py
Workflow 4: FSDP (Fully Sharded Data Parallel)
Enable FSDP:
from accelerate import Accelerator, FullyShardedDataParallelPlugin
fsdp_plugin = FullyShardedDataParallelPlugin(
sharding_strategy="FULL_SHARD", # ZeRO-3 equivalent
auto_wrap_policy="TRANSFORMER_AUTO_WRAP",
cpu_offload=False
)
accelerator = Accelerator(
mixed_precision='bf16',
fsdp_plugin=fsdp_plugin
)
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
Or via config:
accelerate config
# Select: FSDP → Full Shard → No CPU Offload
Workflow 5: Gradient accumulation
Accumulate gradients:
from accelerate import Accelerator
accelerator = Accelerator(gradient_accumulation_steps=4)
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
for batch in dataloader:
with accelerator.accumulate(model): # Handles accumulation
optimizer.zero_grad()
loss = model(batch)
accelerator.backward(loss)
optimizer.step()
Effective batch size: batch_size * num_gpus * gradient_accumulation_steps
When to use vs alternatives
Use Accelerate when:
- Want simplest distributed training
- Need single script for any hardware
- Use HuggingFace ecosystem
- Want flexibility (DDP/DeepSpeed/FSDP/Megatron)
- Need quick prototyping
Key advantages:
- 4 lines: Minimal code changes
- Unified API: Same code for DDP, DeepSpeed, FSDP, Megatron
- Automatic: Device placement, mixed precision, sharding
- Interactive config: No manual launcher setup
- Single launch: Works everywhere
Use alternatives instead:
- PyTorch Lightning: Need callbacks, high-level abstractions
- Ray Train: Multi-node orchestration, hyperparameter tuning
- DeepSpeed: Direct API control, advanced features
- Raw DDP: Maximum control, minimal abstraction
Common issues
Issue: Wrong device placement
Don't manually move to device:
# WRONG
batch = batch.to('cuda')
# CORRECT
# Accelerate handles it automatically after prepare()
Issue: Gradient accumulation not working
Use context manager:
# CORRECT
with accelerator.accumulate(model):
optimizer.zero_grad()
accelerator.backward(loss)
optimizer.step()
Issue: Checkpointing in distributed
Use accelerator methods:
# Save only on main process
if accelerator.is_main_process:
accelerator.save_state('checkpoint/')
# Load on all processes
accelerator.load_state('checkpoint/')
Issue: Different results with FSDP
Ensure same random seed:
from accelerate.utils import set_seed
set_seed(42)
Advanced topics
Megatron integration: See references/megatron-integration.md for tensor parallelism, pipeline parallelism, and sequence parallelism setup.
Custom plugins: See references/custom-plugins.md for creating custom distributed plugins and advanced configuration.
Performance tuning: See references/performance.md for profiling, memory optimization, and best practices.
Hardware requirements
- CPU: Works (slow)
- Single GPU: Works
- Multi-GPU: DDP (default), DeepSpeed, or FSDP
- Multi-node: DDP, DeepSpeed, FSDP, Megatron
- TPU: Supported
- Apple MPS: Supported
Launcher requirements:
- DDP:
torch.distributed.run(built-in) - DeepSpeed:
deepspeed(pip install deepspeed) - FSDP: PyTorch 1.12+ (built-in)
- Megatron: Custom setup
Resources
- Docs: https://huggingface.co/docs/accelerate
- GitHub: https://github.com/huggingface/accelerate
- Version: 1.11.0+
- Tutorial: "Accelerate your scripts"
- Examples: https://github.com/huggingface/accelerate/tree/main/examples
- Used by: HuggingFace Transformers, TRL, PEFT, all HF libraries
快速安装
/plugin add https://github.com/zechenzhangAGI/AI-research-SKILLs/tree/main/accelerate在 Claude Code 中复制并粘贴此命令以安装该技能
GitHub 仓库
相关推荐技能
llamaguard
其他LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
langchain
元LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。
