MCP HubMCP Hub
返回技能列表

huggingface-accelerate

zechenzhangAGI
更新于 Today
48 次查看
62
2
62
在 GitHub 上查看
开发aiapiautomation

关于

HuggingFace Accelerate provides the simplest API for adding distributed training to PyTorch scripts with just 4 lines of code. It offers a unified interface for multiple distributed training frameworks like DeepSpeed, FSDP, and DDP while handling automatic device placement and mixed precision. This makes it ideal for developers who want to quickly scale their PyTorch training across multiple GPUs or nodes without complex configuration.

技能文档

HuggingFace Accelerate - Unified Distributed Training

Quick start

Accelerate simplifies distributed training to 4 lines of code.

Installation:

pip install accelerate

Convert PyTorch script (4 lines):

import torch
+ from accelerate import Accelerator

+ accelerator = Accelerator()

  model = torch.nn.Transformer()
  optimizer = torch.optim.Adam(model.parameters())
  dataloader = torch.utils.data.DataLoader(dataset)

+ model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)

  for batch in dataloader:
      optimizer.zero_grad()
      loss = model(batch)
-     loss.backward()
+     accelerator.backward(loss)
      optimizer.step()

Run (single command):

accelerate launch train.py

Common workflows

Workflow 1: From single GPU to multi-GPU

Original script:

# train.py
import torch

model = torch.nn.Linear(10, 2).to('cuda')
optimizer = torch.optim.Adam(model.parameters())
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32)

for epoch in range(10):
    for batch in dataloader:
        batch = batch.to('cuda')
        optimizer.zero_grad()
        loss = model(batch).mean()
        loss.backward()
        optimizer.step()

With Accelerate (4 lines added):

# train.py
import torch
from accelerate import Accelerator  # +1

accelerator = Accelerator()  # +2

model = torch.nn.Linear(10, 2)
optimizer = torch.optim.Adam(model.parameters())
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32)

model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)  # +3

for epoch in range(10):
    for batch in dataloader:
        # No .to('cuda') needed - automatic!
        optimizer.zero_grad()
        loss = model(batch).mean()
        accelerator.backward(loss)  # +4
        optimizer.step()

Configure (interactive):

accelerate config

Questions:

  • Which machine? (single/multi GPU/TPU/CPU)
  • How many machines? (1)
  • Mixed precision? (no/fp16/bf16/fp8)
  • DeepSpeed? (no/yes)

Launch (works on any setup):

# Single GPU
accelerate launch train.py

# Multi-GPU (8 GPUs)
accelerate launch --multi_gpu --num_processes 8 train.py

# Multi-node
accelerate launch --multi_gpu --num_processes 16 \
  --num_machines 2 --machine_rank 0 \
  --main_process_ip $MASTER_ADDR \
  train.py

Workflow 2: Mixed precision training

Enable FP16/BF16:

from accelerate import Accelerator

# FP16 (with gradient scaling)
accelerator = Accelerator(mixed_precision='fp16')

# BF16 (no scaling, more stable)
accelerator = Accelerator(mixed_precision='bf16')

# FP8 (H100+)
accelerator = Accelerator(mixed_precision='fp8')

model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)

# Everything else is automatic!
for batch in dataloader:
    with accelerator.autocast():  # Optional, done automatically
        loss = model(batch)
    accelerator.backward(loss)

Workflow 3: DeepSpeed ZeRO integration

Enable DeepSpeed ZeRO-2:

from accelerate import Accelerator

accelerator = Accelerator(
    mixed_precision='bf16',
    deepspeed_plugin={
        "zero_stage": 2,  # ZeRO-2
        "offload_optimizer": False,
        "gradient_accumulation_steps": 4
    }
)

# Same code as before!
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)

Or via config:

accelerate config
# Select: DeepSpeed → ZeRO-2

deepspeed_config.json:

{
    "fp16": {"enabled": false},
    "bf16": {"enabled": true},
    "zero_optimization": {
        "stage": 2,
        "offload_optimizer": {"device": "cpu"},
        "allgather_bucket_size": 5e8,
        "reduce_bucket_size": 5e8
    }
}

Launch:

accelerate launch --config_file deepspeed_config.json train.py

Workflow 4: FSDP (Fully Sharded Data Parallel)

Enable FSDP:

from accelerate import Accelerator, FullyShardedDataParallelPlugin

fsdp_plugin = FullyShardedDataParallelPlugin(
    sharding_strategy="FULL_SHARD",  # ZeRO-3 equivalent
    auto_wrap_policy="TRANSFORMER_AUTO_WRAP",
    cpu_offload=False
)

accelerator = Accelerator(
    mixed_precision='bf16',
    fsdp_plugin=fsdp_plugin
)

model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)

Or via config:

accelerate config
# Select: FSDP → Full Shard → No CPU Offload

Workflow 5: Gradient accumulation

Accumulate gradients:

from accelerate import Accelerator

accelerator = Accelerator(gradient_accumulation_steps=4)

model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)

for batch in dataloader:
    with accelerator.accumulate(model):  # Handles accumulation
        optimizer.zero_grad()
        loss = model(batch)
        accelerator.backward(loss)
        optimizer.step()

Effective batch size: batch_size * num_gpus * gradient_accumulation_steps

When to use vs alternatives

Use Accelerate when:

  • Want simplest distributed training
  • Need single script for any hardware
  • Use HuggingFace ecosystem
  • Want flexibility (DDP/DeepSpeed/FSDP/Megatron)
  • Need quick prototyping

Key advantages:

  • 4 lines: Minimal code changes
  • Unified API: Same code for DDP, DeepSpeed, FSDP, Megatron
  • Automatic: Device placement, mixed precision, sharding
  • Interactive config: No manual launcher setup
  • Single launch: Works everywhere

Use alternatives instead:

  • PyTorch Lightning: Need callbacks, high-level abstractions
  • Ray Train: Multi-node orchestration, hyperparameter tuning
  • DeepSpeed: Direct API control, advanced features
  • Raw DDP: Maximum control, minimal abstraction

Common issues

Issue: Wrong device placement

Don't manually move to device:

# WRONG
batch = batch.to('cuda')

# CORRECT
# Accelerate handles it automatically after prepare()

Issue: Gradient accumulation not working

Use context manager:

# CORRECT
with accelerator.accumulate(model):
    optimizer.zero_grad()
    accelerator.backward(loss)
    optimizer.step()

Issue: Checkpointing in distributed

Use accelerator methods:

# Save only on main process
if accelerator.is_main_process:
    accelerator.save_state('checkpoint/')

# Load on all processes
accelerator.load_state('checkpoint/')

Issue: Different results with FSDP

Ensure same random seed:

from accelerate.utils import set_seed
set_seed(42)

Advanced topics

Megatron integration: See references/megatron-integration.md for tensor parallelism, pipeline parallelism, and sequence parallelism setup.

Custom plugins: See references/custom-plugins.md for creating custom distributed plugins and advanced configuration.

Performance tuning: See references/performance.md for profiling, memory optimization, and best practices.

Hardware requirements

  • CPU: Works (slow)
  • Single GPU: Works
  • Multi-GPU: DDP (default), DeepSpeed, or FSDP
  • Multi-node: DDP, DeepSpeed, FSDP, Megatron
  • TPU: Supported
  • Apple MPS: Supported

Launcher requirements:

  • DDP: torch.distributed.run (built-in)
  • DeepSpeed: deepspeed (pip install deepspeed)
  • FSDP: PyTorch 1.12+ (built-in)
  • Megatron: Custom setup

Resources

快速安装

/plugin add https://github.com/zechenzhangAGI/AI-research-SKILLs/tree/main/accelerate

在 Claude Code 中复制并粘贴此命令以安装该技能

GitHub 仓库

zechenzhangAGI/AI-research-SKILLs
路径: 08-distributed-training/accelerate
aiai-researchclaudeclaude-codeclaude-skillscodex

相关推荐技能

llamaguard

其他

LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能

langchain

LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。

查看技能