MCP HubMCP Hub
返回技能列表

iterate-pr

davila7
更新于 Today
121 次查看
18,478
1,685
18,478
在 GitHub 上查看
其他aiautomation

关于

This Claude Skill automates the iterative process of fixing CI failures and addressing review feedback in a pull request. It continuously pushes fixes and checks statuses until all CI checks pass, handling the feedback-fix-push-wait cycle. It requires GitHub CLI and prioritizes resolving pending CI checks before proceeding with other feedback.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/davila7/claude-code-templates
Git 克隆备选方式
git clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/iterate-pr

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Iterate on PR Until CI Passes

Continuously iterate on the current branch until all CI checks pass and review feedback is addressed.

Requires: GitHub CLI (gh) authenticated and available.

Process

Step 1: Identify the PR

gh pr view --json number,url,headRefName,baseRefName

If no PR exists for the current branch, stop and inform the user.

Step 2: Check CI Status First

Always check CI/GitHub Actions status before looking at review feedback:

gh pr checks --json name,state,bucket,link,workflow

The bucket field categorizes state into: pass, fail, pending, skipping, or cancel.

Important: If any of these checks are still pending, wait before proceeding:

  • sentry / sentry-io
  • codecov
  • cursor / bugbot / seer
  • Any linter or code analysis checks

These bots may post additional feedback comments once their checks complete. Waiting avoids duplicate work.

Step 3: Gather Review Feedback

Once CI checks have completed (or at least the bot-related checks), gather human and bot feedback:

Review Comments and Status:

gh pr view --json reviews,comments,reviewDecision

Inline Code Review Comments:

gh api repos/{owner}/{repo}/pulls/{pr_number}/comments

PR Conversation Comments (includes bot comments):

gh api repos/{owner}/{repo}/issues/{pr_number}/comments

Look for bot comments from: Sentry, Codecov, Cursor, Bugbot, Seer, and other automated tools.

Step 4: Investigate Failures

For each CI failure, get the actual logs:

# List recent runs for this branch
gh run list --branch $(git branch --show-current) --limit 5 --json databaseId,name,status,conclusion

# View failed logs for a specific run
gh run view <run-id> --log-failed

Do NOT assume what failed based on the check name alone. Always read the actual logs.

Step 5: Validate Feedback

For each piece of feedback (CI failure or review comment):

  1. Read the relevant code - Understand the context before making changes
  2. Verify the issue is real - Not all feedback is correct; reviewers and bots can be wrong
  3. Check if already addressed - The issue may have been fixed in a subsequent commit
  4. Skip invalid feedback - If the concern is not legitimate, move on

Step 6: Address Valid Issues

Make minimal, targeted code changes. Only fix what is actually broken.

Step 7: Commit and Push

git add -A
git commit -m "fix: <descriptive message of what was fixed>"
git push

Step 8: Wait for CI

Use the built-in watch functionality:

gh pr checks --watch --interval 30

This waits until all checks complete. Exit code 0 means all passed, exit code 1 means failures.

Alternatively, poll manually if you need more control:

gh pr checks --json name,state,bucket | jq '.[] | select(.bucket != "pass")'

Step 9: Repeat

Return to Step 2 if:

  • Any CI checks failed
  • New review feedback appeared

Continue until all checks pass and no unaddressed feedback remains.

Exit Conditions

Success:

  • All CI checks are green (bucket: pass)
  • No unaddressed human review feedback

Ask for Help:

  • Same failure persists after 3 attempts (likely a flaky test or deeper issue)
  • Review feedback requires clarification or decision from the user
  • CI failure is unrelated to branch changes (infrastructure issue)

Stop Immediately:

  • No PR exists for the current branch
  • Branch is out of sync and needs rebase (inform user)

Tips

  • Use gh pr checks --required to focus only on required checks
  • Use gh run view <run-id> --verbose to see all job steps, not just failures
  • If a check is from an external service, the link field in checks JSON provides the URL to investigate

GitHub 仓库

davila7/claude-code-templates
路径: cli-tool/components/skills/sentry/iterate-pr
anthropicanthropic-claudeclaudeclaude-code

相关推荐技能

content-collections

Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能

llamaguard

其他

LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。

查看技能