MCP HubMCP Hub
返回技能列表

Generating Test Data

jeremylongshore
更新于 Today
74 次查看
1,053
135
1,053
在 GitHub 上查看
aitestingautomationdata

关于

This skill enables Claude to generate realistic test data like users, products, and orders using a dedicated plugin. It's designed for developers needing to populate databases, create test fixtures, or simulate user behavior for automated testing. Trigger it with phrases like "generate test data" or "populate database" when setting up testing environments or demonstrations.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus-skills
Git 克隆备选方式
git clone https://github.com/jeremylongshore/claude-code-plugins-plus-skills.git ~/.claude/skills/Generating Test Data

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Overview

This skill empowers Claude to generate realistic and diverse test data, streamlining software testing and development workflows. It leverages the test-data-generator plugin to produce data sets tailored to your specific needs, from user profiles to complex business transactions.

How It Works

  1. Identify Data Requirements: Claude analyzes your request to determine the type and volume of test data required (e.g., users, products, orders, custom schemas).
  2. Generate Data: Claude uses the test-data-generator plugin to create realistic test data based on your specifications.
  3. Present Data: Claude presents the generated data in a suitable format, such as JSON or a data file, ready for use in your testing environment.

When to Use This Skill

This skill activates when you need to:

  • Generate a large number of realistic user profiles for testing authentication and authorization.
  • Create a dataset of products with varying attributes for testing e-commerce functionality.
  • Simulate order placements and transactions for performance testing and load testing.
  • Populate a database with realistic data for demonstration or training purposes.
  • Generate data that adheres to a specific schema or data model.

Examples

Example 1: Generating User Data

User request: "Generate 500 test users with realistic names, emails, and addresses."

The skill will:

  1. Invoke the test-data-generator plugin to create 500 user records.
  2. Populate each record with realistic names, email addresses, and physical addresses.
  3. Provide the generated data in JSON format.

Example 2: Creating Product Data

User request: "Create product test data including name, description, price, and category for 100 different products."

The skill will:

  1. Utilize the test-data-generator plugin to generate 100 product records.
  2. Populate each product with relevant details like name, description, price, and category.
  3. Deliver the data in a structured format suitable for database insertion.

Best Practices

  • Schema Definition: Provide a clear schema or data model when generating custom data to ensure accuracy and consistency.
  • Locale Considerations: Specify the desired locale when generating data that is sensitive to regional variations (e.g., names, addresses, phone numbers).
  • Seed Values: Use seed values for reproducible test data generation, ensuring consistency across multiple runs.

Integration

This skill can be integrated with other plugins, such as database management tools, to directly populate databases with the generated test data. It can also be used in conjunction with API testing tools to generate realistic request payloads.

GitHub 仓库

jeremylongshore/claude-code-plugins-plus-skills
路径: backups/plugin-enhancements/plugin-backups/test-data-generator_20251020_010452/skills/skill-adapter
aiautomationclaude-codedevopsmarketplacemcp

相关推荐技能

content-collections

Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能

llamaguard

其他

LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。

查看技能