splitting-datasets
关于
This skill enables Claude to automatically split datasets into training, validation, and test sets for machine learning. It generates the necessary Python code for data partitioning when triggered by terms like "train-test split" or "data partitioning." Use it during data preparation to facilitate proper model development and evaluation workflows.
快速安装
Claude Code
推荐/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus-skillsgit clone https://github.com/jeremylongshore/claude-code-plugins-plus-skills.git ~/.claude/skills/splitting-datasets在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
Overview
This skill automates the process of dividing a dataset into subsets for training, validating, and testing machine learning models. It ensures proper data preparation and facilitates robust model evaluation.
How It Works
- Analyze Request: The skill analyzes the user's request to determine the dataset to be split and the desired proportions for each subset.
- Generate Code: Based on the request, the skill generates Python code utilizing standard ML libraries to perform the data splitting.
- Execute Splitting: The code is executed to split the dataset into training, validation, and testing sets according to the specified ratios.
When to Use This Skill
This skill activates when you need to:
- Prepare a dataset for machine learning model training.
- Create training, validation, and testing sets.
- Partition data to evaluate model performance.
Examples
Example 1: Splitting a CSV file
User request: "Split the data in 'my_data.csv' into 70% training, 15% validation, and 15% testing sets."
The skill will:
- Generate Python code to read the 'my_data.csv' file.
- Execute the code to split the data according to the specified proportions, creating 'train.csv', 'validation.csv', and 'test.csv' files.
Example 2: Creating a Train-Test Split
User request: "Create a train-test split of 'large_dataset.csv' with an 80/20 ratio."
The skill will:
- Generate Python code to load 'large_dataset.csv'.
- Execute the code to split the dataset into 80% training and 20% testing sets, saving them as 'train.csv' and 'test.csv'.
Best Practices
- Data Integrity: Verify that the splitting process maintains the integrity of the data, ensuring no data loss or corruption.
- Stratification: Consider stratification when splitting imbalanced datasets to maintain class distributions in each subset.
- Randomization: Ensure the splitting process is randomized to avoid bias in the resulting datasets.
Integration
This skill can be integrated with other data processing and model training tools within the Claude Code ecosystem to create a complete machine learning workflow.
GitHub 仓库
相关推荐技能
content-collections
元Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
llamaguard
其他LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。
