Analyzing System Throughput
关于
This skill enables Claude to analyze and optimize system throughput using the `throughput-analyzer` plugin. It triggers when users request performance improvements, bottleneck identification, or capacity analysis. The skill assesses request/data throughput, concurrency, queue processing, and resource saturation to determine limiting factors and evaluate scaling strategies.
快速安装
Claude Code
推荐/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus-skillsgit clone https://github.com/jeremylongshore/claude-code-plugins-plus-skills.git ~/.claude/skills/Analyzing System Throughput在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
Overview
This skill allows Claude to analyze system performance and identify areas for throughput optimization. It uses the throughput-analyzer plugin to provide insights into request handling, data processing, and resource utilization.
How It Works
- Identify Critical Components: Determines which system components are most relevant to throughput.
- Analyze Throughput Metrics: Gathers and analyzes current throughput metrics for the identified components.
- Identify Limiting Factors: Pinpoints the bottlenecks and constraints that are hindering optimal throughput.
- Evaluate Scaling Strategies: Explores potential scaling strategies and their impact on overall throughput.
When to Use This Skill
This skill activates when you need to:
- Analyze system throughput to identify performance bottlenecks.
- Optimize system performance for increased capacity.
- Evaluate scaling strategies to improve throughput.
Examples
Example 1: Analyzing Web Server Throughput
User request: "Analyze the throughput of my web server and identify any bottlenecks."
The skill will:
- Activate the
throughput-analyzerplugin. - Analyze request throughput, data throughput, and resource saturation of the web server.
- Provide a report identifying potential bottlenecks and optimization opportunities.
Example 2: Optimizing Data Processing Pipeline
User request: "Optimize the throughput of my data processing pipeline."
The skill will:
- Activate the
throughput-analyzerplugin. - Analyze data throughput, queue processing, and concurrency limits of the data processing pipeline.
- Suggest improvements to increase data processing rates and overall throughput.
Best Practices
- Component Selection: Focus the analysis on the most throughput-critical components to avoid unnecessary overhead.
- Metric Interpretation: Carefully interpret throughput metrics to accurately identify limiting factors.
- Scaling Evaluation: Thoroughly evaluate the potential impact of scaling strategies before implementation.
Integration
This skill can be used in conjunction with other monitoring and performance analysis tools to gain a more comprehensive understanding of system behavior. It provides a starting point for further investigation and optimization efforts.
GitHub 仓库
相关推荐技能
content-collections
元Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
llamaguard
其他LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。
