analyzing-network-latency
关于
This skill helps developers analyze and optimize network latency in applications by identifying bottlenecks like serial requests and inefficient connection handling. Use it when debugging performance issues or when asked to improve network request patterns. It provides actionable suggestions for parallelization, batching, connection pooling, timeout adjustments, and DNS optimization.
快速安装
Claude Code
推荐/plugin add https://github.com/jeremylongshore/claude-code-plugins-plusgit clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/analyzing-network-latency在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
Overview
This skill empowers Claude to diagnose network latency issues and propose optimizations to improve application performance. It analyzes request patterns, identifies potential bottlenecks, and recommends solutions for faster and more efficient network communication.
How It Works
- Request Pattern Identification: Claude identifies all network requests made by the application.
- Latency Analysis: Claude analyzes the latency associated with each request, looking for patterns and anomalies.
- Optimization Recommendations: Claude suggests optimizations such as parallelization, request batching, connection pooling, and timeout adjustments.
When to Use This Skill
This skill activates when you need to:
- Analyze network latency in an application.
- Optimize network request patterns for improved performance.
- Identify bottlenecks in network communication.
Examples
Example 1: Optimizing API Calls
User request: "Analyze network latency and suggest improvements for our API calls."
The skill will:
- Identify all API calls made by the application.
- Analyze the latency of each API call.
- Suggest parallelizing certain API calls and implementing connection pooling.
Example 2: Reducing Page Load Time
User request: "Optimize network request patterns to reduce page load time."
The skill will:
- Identify all network requests made during page load.
- Analyze the latency of each request.
- Suggest batching multiple requests into a single request and optimizing timeout configurations.
Best Practices
- Parallelization: Identify serial requests that can be executed in parallel to reduce overall latency.
- Request Batching: Batch multiple small requests into a single larger request to reduce overhead.
- Connection Pooling: Reuse existing HTTP connections to avoid the overhead of establishing new connections for each request.
Integration
This skill can be used in conjunction with other plugins that manage infrastructure or application code, allowing for automated implementation of the suggested optimizations. For instance, it can work with a code modification plugin to automatically apply connection pooling or adjust timeout values.
GitHub 仓库
相关推荐技能
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
langchain
元LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。
llamaguard
其他LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。
