Vertex AI Media Master
关于
Vertex AI Media Master automatically activates for Google Vertex AI multimodal operations including video processing, audio generation, and image creation. It handles tasks like marketing campaign automation, social media content creation, and ad creative generation. Use this skill when working with Vertex AI's multimodal features, especially for media asset workflows and content generation.
技能文档
Vertex AI Media Master - Comprehensive Multimodal AI Operations
This Agent Skill provides comprehensive mastery of Google Vertex AI multimodal capabilities for video, audio, image, and text processing with focus on marketing applications.
Core Capabilities
🎥 Video Processing (Gemini 2.0/2.5)
- Video Understanding: Process videos up to 6 hours at low resolution or 2 hours at default resolution
- 2M Context Window: Gemini 2.5 Pro handles massive video content
- Audio Track Processing: Automatic audio transcription from video
- Multi-video Analysis: Process multiple videos in single request
- Video Summarization: Extract key moments, scenes, and insights
- Marketing Use Cases:
- Analyze competitor video ads
- Extract highlights from long-form content
- Generate video summaries for social media
- Transcribe and caption video content
- Identify brand mentions and product placements
🎵 Audio Generation & Processing
- Lyria Model (2025): Native audio and music generation
- Speech-to-Text: Transcribe audio with speaker diarization
- Text-to-Speech: Generate natural voiceovers
- Music Composition: Background music for campaigns
- Audio Enhancement: Noise reduction and quality improvement
- Marketing Use Cases:
- Generate podcast scripts and voiceovers
- Create audio ads and radio spots
- Produce background music for video campaigns
- Transcribe customer interviews
- Generate multilingual voiceovers
🖼️ Image Generation (Imagen 4 & Gemini 2.5 Flash Image)
- Imagen 4: Highest quality text-to-image generation
- Gemini 2.5 Flash Image: Interleaved image generation with text
- Style Transfer: Apply brand styles to generated images
- Product Visualization: Generate product mockups
- Campaign Assets: Create ad creatives and social media graphics
- Marketing Use Cases:
- Generate personalized ad images (Adios solution)
- Create social media graphics at scale
- Produce product lifestyle images
- Generate A/B test variations
- Create branded campaign visuals
📢 Marketing Campaign Automation
- ViGenAiR: Convert long-form video ads to short formats automatically
- Adios: Generate personalized ad images tailored to audience context
- Campaign Asset Generation: Photos, soundtracks, voiceovers from prompts
- Content Pipeline: Email copy, blog posts, social media, PMax assets
- Catalog Enrichment: Multi-agent workflow for product onboarding
- Marketing Use Cases:
- Automated campaign asset production
- Personalized content at scale
- Multi-channel content distribution
- Product catalog enhancement
- Visual merchandising automation
🔧 Technical Implementation
API Integration:
from google.cloud import aiplatform
from vertexai.preview.generative_models import GenerativeModel
# Initialize Vertex AI
aiplatform.init(project="your-project", location="us-central1")
# Gemini 2.5 Pro for video
model = GenerativeModel("gemini-2.5-pro")
# Process video with audio
response = model.generate_content([
"Analyze this video and extract key marketing insights",
video_file, # Up to 6 hours
])
# Imagen 4 for image generation
from vertexai.preview.vision_models import ImageGenerationModel
imagen = ImageGenerationModel.from_pretrained("imagen-4")
images = imagen.generate_images(
prompt="Professional product photo, studio lighting, white background",
number_of_images=4
)
Gemini 2.5 Flash Image (Interleaved Generation):
# Generate images within text responses
model = GenerativeModel("gemini-2.5-flash-image")
response = model.generate_content([
"Create a 5-step recipe with images for each step"
])
# Returns text + images interleaved
Audio Generation (Lyria):
from vertexai.preview.audio_models import AudioGenerationModel
lyria = AudioGenerationModel.from_pretrained("lyria")
audio = lyria.generate_audio(
prompt="Upbeat background music for product launch video, 30 seconds",
duration=30
)
📊 Marketing Workflow Automation
1. Multi-Channel Campaign Creation:
# Single prompt generates all assets
campaign = model.generate_content([
"""Create a product launch campaign for [product]:
- Hero image (1920x1080)
- 3 social media graphics (1080x1080)
- 30-second video script
- Background music description
- Email marketing copy
- Instagram caption"""
])
2. Video Repurposing Pipeline:
# Long-form to short-form conversion (ViGenAiR approach)
long_video = "gs://bucket/original-ad-60s.mp4"
response = model.generate_content([
f"Extract 3 engaging 15-second clips from this video for TikTok/Reels",
long_video
])
# Auto-generates format-specific versions
3. Personalized Ad Generation:
# Context-aware image generation (Adios approach)
for audience in audiences:
ad_image = imagen.generate_images(
prompt=f"Product ad for {product}, targeting {audience.demographics}, {audience.style_preference}",
aspect_ratio="16:9"
)
🎯 Best Practices for Jeremy
1. Project Setup:
# Set environment variables
export GOOGLE_CLOUD_PROJECT="your-project-id"
export GOOGLE_APPLICATION_CREDENTIALS="path/to/service-account.json"
# Install SDK
pip install google-cloud-aiplatform[vision,audio] google-generativeai
2. Rate Limits & Quotas:
- Gemini 2.5 Pro: 2M tokens/min (video processing)
- Imagen 4: 100 images/min
- Monitor usage in Cloud Console
3. Cost Optimization:
- Use Gemini 2.5 Flash for faster, cheaper operations
- Batch image generation requests
- Cache video embeddings for repeated analysis
- Use low-resolution video setting when appropriate
4. Security & Compliance:
- Keep API keys in Secret Manager, never in code
- Use service accounts with minimal permissions
- Enable VPC Service Controls for data residency
- Log all API calls for audit trails
🚀 Advanced Marketing Use Cases
1. Campaign Performance Analysis:
# Analyze competitor campaigns
competitor_videos = ["gs://bucket/competitor1.mp4", "gs://bucket/competitor2.mp4"]
analysis = model.generate_content([
"Compare these competitor videos: themes, messaging, CTAs, production quality",
*competitor_videos
])
2. Content Localization:
# Generate multilingual campaigns
for lang in ["en", "es", "fr", "de", "ja"]:
localized_content = model.generate_content([
f"Translate and culturally adapt this campaign for {lang} market:",
campaign_brief,
hero_image
])
3. A/B Test Generation:
# Generate variations automatically
variations = []
for style in ["minimalist", "bold", "luxury", "playful"]:
variation = imagen.generate_images(
prompt=f"Product ad, {style} style, {brand_guidelines}",
number_of_images=1
)
variations.append(variation)
📚 Reference Documentation
Official Documentation:
- Vertex AI Multimodal: https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/overview
- Gemini 2.5 Pro: https://cloud.google.com/vertex-ai/generative-ai/docs/models
- Imagen 4: https://cloud.google.com/vertex-ai/generative-ai/docs/image/overview
- Video Understanding: https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/video-understanding
Marketing Solutions:
- GenAI for Marketing: https://github.com/GoogleCloudPlatform/genai-for-marketing
- ViGenAiR (video repurposing)
- Adios (personalized ad images)
Pricing:
- Gemini 2.5 Pro: $3.50/1M input tokens, $10.50/1M output tokens
- Imagen 4: $0.04/image
- Video processing: Included in Gemini token pricing
When This Skill Activates
This skill automatically activates when you mention:
- Video processing, analysis, or understanding
- Audio generation, music composition, or voiceovers
- Image generation, ad creatives, or visual content
- Marketing campaigns, content automation, or asset production
- Gemini multimodal capabilities
- Vertex AI media operations
- Social media content, email marketing, or PMax campaigns
Integration with Other Tools
Google Cloud Services:
- Cloud Storage for media asset management
- BigQuery for campaign analytics
- Cloud Functions for automation triggers
- Vertex AI Pipelines for content workflows
Third-Party Integrations:
- Social media APIs (LinkedIn, Twitter, Instagram)
- Marketing automation platforms (HubSpot, Marketo)
- CMS integrations (WordPress, Contentful)
- DAM systems (Bynder, Cloudinary)
Success Metrics
Track These KPIs:
- Asset generation speed (baseline: 5 images/min)
- Content approval rate (target: >80%)
- Campaign personalization scale (target: 1000+ variants)
- Cost per asset (target: <$0.10/image)
- Time saved vs manual production (target: 90% reduction)
This skill makes Jeremy a Vertex AI multimodal expert with instant access to video processing, audio generation, image creation, and marketing automation capabilities.
快速安装
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus/tree/main/vertex-media-master在 Claude Code 中复制并粘贴此命令以安装该技能
GitHub 仓库
相关推荐技能
llamaguard
其他LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
langchain
元LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。
