MCP HubMCP Hub
返回技能列表

clawdis-nodes

steipete
更新于 Today
114 次查看
468
45
468
在 GitHub 上查看
其他ai

关于

This skill enables developers to discover and target specific Clawdis-paired devices (nodes) via CLI commands. It helps agents list available nodes, inspect their capabilities/permissions, and select the best target machine for actions. Use it when you need to reason about device availability and choose an appropriate node for canvas, camera, or system operations.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/steipete/clawdis
Git 克隆备选方式
git clone https://github.com/steipete/clawdis.git ~/.claude/skills/clawdis-nodes

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Clawdis Nodes

Use the node system to target specific devices (macOS node mode, iOS, Android) for canvas/camera/screen/system actions. Use presence to infer which user machine is active, then pick the matching node.

Quick start

List known nodes and whether they are paired/connected:

clawdis nodes status

Inspect a specific node (commands, caps, permissions):

clawdis nodes describe --node <idOrNameOrIp>

Node discovery workflow (agent)

  1. List nodes with clawdis nodes status.
  2. Choose a target:
    • Prefer connected nodes with the capabilities you need.
    • Use perms (permissions map) to avoid asking for actions that will fail.
  3. Confirm commands with clawdis nodes describe --node ….
  4. Invoke actions via clawdis nodes … (camera, canvas, screen, system).

If no nodes are connected:

  • Check pairing: clawdis nodes pending / clawdis nodes list
  • Ask the user to open/foreground the node app if the action requires it (canvas/camera/screen on iOS/Android).

Presence vs nodes (don’t confuse them)

Presence shows Gateway + connected clients (mac app, WebChat, CLI).
Nodes are paired devices that expose commands.

Use presence to infer where the user is active, then map that to a node:

clawdis gateway call system-presence

Heuristics:

  • Pick the presence entry with the smallest lastInputSeconds (most active).
  • Match presence host / deviceFamily to a node displayName / deviceFamily.
  • If multiple matches, ask for clarification or use nodes describe to choose.

Note: CLI connections (client.mode=cli) do not show up in presence.

Tailnet / Tailscale (optional context)

Node discovery is Gateway‑owned; Tailnet details only matter for reaching the Gateway:

  • On LAN, the Gateway advertises a Bridge via Bonjour.
  • Cross‑network, prefer Tailnet MagicDNS or Tailnet IP to reach the Gateway.
  • Once connected, always target nodes by id/name/IP via the Gateway (not direct).

Pairing & approvals

List pairing requests:

clawdis nodes pending

Approve/reject:

clawdis nodes approve <requestId>
clawdis nodes reject <requestId>

Typical agent usages

Send a notification to a specific Mac node:

clawdis nodes notify --node <idOrNameOrIp> --title "Ping" --body "Gateway ready"

Capture a node canvas snapshot:

clawdis nodes canvas snapshot --node <idOrNameOrIp> --format png

Troubleshooting

  • NODE_BACKGROUND_UNAVAILABLE: the node app must be foregrounded (iOS/Android).
  • Missing permissions in nodes status: ask the user to grant permissions in the node app.
  • No connected nodes: ensure the Gateway is reachable; check tailnet/SSH config if remote.

GitHub 仓库

steipete/clawdis
路径: skills/clawdis-nodes
relaywhatsapp

相关推荐技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能

llamaguard

其他

LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。

查看技能

langchain

LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。

查看技能