MCP HubMCP Hub
返回技能列表

adk-infra-expert

jeremylongshore
更新于 Today
47 次查看
712
74
712
在 GitHub 上查看
开发ai

关于

This Claude Skill provisions production Vertex AI ADK Agent Engine infrastructure using Terraform. It handles core components including Agent Engine runtime, Code Execution Sandbox, Memory Bank, VPC-SC, and IAM security. Use it when you need to deploy or manage secure multi-agent infrastructure for ADK production environments.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git 克隆备选方式
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/adk-infra-expert

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

What This Skill Does

Expert in provisioning production Vertex AI ADK infrastructure with Agent Engine, Code Execution Sandbox (14-day state), Memory Bank, VPC Service Controls, and enterprise security.

When This Skill Activates

Triggers: "adk terraform deployment", "agent engine infrastructure", "provision adk agent", "vertex ai agent terraform", "code execution sandbox terraform"

Core Terraform Modules

Agent Engine Deployment

resource "google_vertex_ai_agent_runtime" "adk_agent" {
  project  = var.project_id
  location = var.region

  display_name = "adk-production-agent"

  agent_config {
    model         = "gemini-2.5-flash"

    code_execution {
      enabled           = true
      state_ttl_days    = 14
      sandbox_type      = "SECURE_ISOLATED"
    }

    memory_bank {
      enabled = true
    }

    tools = [
      {
        code_execution = {}
      },
      {
        memory_bank = {}
      }
    ]
  }

  vpc_config {
    vpc_network    = google_compute_network.agent_vpc.id
    private_service_connect {
      enabled = true
    }
  }
}

VPC Service Controls

resource "google_access_context_manager_service_perimeter" "adk_perimeter" {
  parent = "accessPolicies/${var.access_policy_id}"
  name   = "accessPolicies/${var.access_policy_id}/servicePerimeters/adk_perimeter"
  title  = "ADK Agent Engine Perimeter"

  status {
    restricted_services = [
      "aiplatform.googleapis.com",
      "run.googleapis.com"
    ]

    vpc_accessible_services {
      enable_restriction = true
      allowed_services   = [
        "aiplatform.googleapis.com"
      ]
    }
  }
}

IAM for Native Agent Identity

resource "google_project_iam_member" "agent_identity" {
  project = var.project_id
  role    = "roles/aiplatform.agentUser"
  member  = "serviceAccount:${google_service_account.adk_agent.email}"
}

resource "google_service_account" "adk_agent" {
  account_id   = "adk-agent-sa"
  display_name = "ADK Agent Service Account"
}

# Least privilege for Code Execution
resource "google_project_iam_member" "code_exec_permissions" {
  for_each = toset([
    "roles/compute.viewer",
    "roles/container.viewer",
    "roles/run.viewer"
  ])

  project = var.project_id
  role    = each.key
  member  = "serviceAccount:${google_service_account.adk_agent.email}"
}

Tool Permissions

Read, Write, Edit, Grep, Glob, Bash - Enterprise infrastructure provisioning

References

GitHub 仓库

jeremylongshore/claude-code-plugins-plus
路径: backups/skills-batch-20251204-000554/plugins/devops/jeremy-adk-terraform/skills/adk-infra-expert
aiautomationclaude-codedevopsmarketplacemcp

相关推荐技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能

langchain

LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。

查看技能

llamaguard

其他

LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。

查看技能