tuning-hyperparameters
关于
This skill enables Claude to automate hyperparameter tuning for machine learning models using grid search, random search, or Bayesian optimization. It generates the necessary code for the chosen search strategy, handles validation, and provides performance metrics. Use it when a developer requests model optimization or mentions specific tuning methods.
快速安装
Claude Code
推荐/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus-skillsgit clone https://github.com/jeremylongshore/claude-code-plugins-plus-skills.git ~/.claude/skills/tuning-hyperparameters在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
Overview
This skill empowers Claude to fine-tune machine learning models by automatically searching for the optimal hyperparameter configurations. It leverages different search strategies (grid, random, Bayesian) to efficiently explore the hyperparameter space and identify settings that maximize model performance.
How It Works
- Analyzing Requirements: Claude analyzes the user's request to determine the model, the hyperparameters to tune, the search strategy, and the evaluation metric.
- Generating Code: Claude generates Python code using appropriate ML libraries (e.g., scikit-learn, Optuna) to implement the specified hyperparameter search. The code includes data loading, preprocessing, model training, and evaluation.
- Executing Search: The generated code is executed to perform the hyperparameter search. The plugin iterates through different hyperparameter combinations, trains the model with each combination, and evaluates its performance.
- Reporting Results: Claude reports the best hyperparameter configuration found during the search, along with the corresponding performance metrics. It also provides insights into the search process and potential areas for further optimization.
When to Use This Skill
This skill activates when you need to:
- Optimize the performance of a machine learning model.
- Automatically search for the best hyperparameter settings.
- Compare different hyperparameter search strategies.
- Improve model accuracy, precision, recall, or other relevant metrics.
Examples
Example 1: Optimizing a Random Forest Model
User request: "Tune hyperparameters of a Random Forest model using grid search to maximize accuracy on the iris dataset. Consider n_estimators and max_depth."
The skill will:
- Generate code to perform a grid search over the specified hyperparameters (n_estimators, max_depth) of a Random Forest model using the iris dataset.
- Execute the grid search and report the best hyperparameter combination and the corresponding accuracy score.
Example 2: Using Bayesian Optimization
User request: "Optimize a Gradient Boosting model using Bayesian optimization with Optuna to minimize the root mean squared error on the Boston housing dataset."
The skill will:
- Generate code to perform Bayesian optimization using Optuna to find the best hyperparameters for a Gradient Boosting model on the Boston housing dataset.
- Execute the optimization and report the best hyperparameter combination and the corresponding RMSE.
Best Practices
- Define Search Space: Clearly define the range and type of values for each hyperparameter to be tuned.
- Choose Appropriate Strategy: Select the hyperparameter search strategy (grid, random, Bayesian) based on the complexity of the hyperparameter space and the available computational resources. Bayesian optimization is generally more efficient for complex spaces.
- Use Cross-Validation: Implement cross-validation to ensure the robustness of the evaluation metric and prevent overfitting.
Integration
This skill integrates seamlessly with other Claude Code plugins that involve machine learning tasks, such as data analysis, model training, and deployment. It can be used in conjunction with data visualization tools to gain insights into the impact of different hyperparameter settings on model performance.
GitHub 仓库
相关推荐技能
content-collections
元Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
llamaguard
其他LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。
