detecting-memory-leaks
关于
This skill enables Claude to detect potential memory leaks and analyze memory usage patterns when developers request memory analysis. It identifies common issues like unremoved event listeners, uncancelled timers, and circular references that prevent garbage collection. Use it to proactively find and fix memory leaks for improved application performance and stability.
技能文档
Overview
This skill helps you identify and resolve memory leaks in your code. By analyzing your code for common memory leak patterns, it can help you improve the performance and stability of your application.
How It Works
- Initiate Analysis: The user requests memory leak detection.
- Code Analysis: The plugin analyzes the codebase for potential memory leak patterns.
- Report Generation: The plugin generates a report detailing potential memory leaks and recommended fixes.
When to Use This Skill
This skill activates when you need to:
- Detect potential memory leaks in your application.
- Analyze memory usage patterns to identify performance bottlenecks.
- Troubleshoot performance issues related to memory leaks.
Examples
Example 1: Identifying Event Listener Leaks
User request: "detect memory leaks in my event handling code"
The skill will:
- Analyze the code for unremoved event listeners.
- Generate a report highlighting potential event listener leaks and suggesting how to properly remove them.
Example 2: Analyzing Cache Growth
User request: "analyze memory usage to find excessive cache growth"
The skill will:
- Analyze cache implementations for unbounded growth.
- Identify caches that are not properly managed and recommend strategies for limiting their size.
Best Practices
- Code Review: Always review the reported potential leaks to ensure they are genuine issues.
- Regular Analysis: Incorporate memory leak detection into your regular development workflow.
- Targeted Analysis: Focus your analysis on specific areas of your code that are known to be memory-intensive.
Integration
This skill can be used in conjunction with other performance analysis tools to provide a comprehensive view of application performance.
快速安装
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus/tree/main/memory-leak-detector在 Claude Code 中复制并粘贴此命令以安装该技能
GitHub 仓库
相关推荐技能
llamaguard
其他LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
langchain
元LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。
