managing-database-testing
关于
The managing-database-testing skill helps developers create robust database tests by generating realistic test data, wrapping tests in transactions for automatic rollback, and validating database schemas. Use this skill when you need database testing utilities for test data factories, transaction management, or schema validation. Trigger it by mentioning "database testing" or using the `/db-test` command.
技能文档
Overview
This skill empowers Claude to create and manage comprehensive database testing workflows. It facilitates the generation of realistic test data, ensures transactional integrity with automatic rollbacks, and validates database schema integrity.
How It Works
- Test Data Generation: Generates realistic test data using factories and fixtures, populating the database with relevant information for testing.
- Transaction Wrapping: Wraps database tests within transactions, ensuring that any changes made during the test are automatically rolled back, maintaining a clean testing environment.
- Schema Validation: Validates the database schema against expected structures and constraints, identifying potential issues with migrations or data integrity.
When to Use This Skill
This skill activates when you need to:
- Generate test data for database interactions.
- Implement transaction management for database tests.
- Validate database schema and migrations.
Examples
Example 1: Generating Test Data
User request: "Generate test data factories for my PostgreSQL database using Faker to populate users and products tables."
The skill will:
- Create Python code utilizing Faker and a database library (e.g., SQLAlchemy) to generate realistic user and product data.
- Provide instructions on how to execute the generated code to seed the database.
Example 2: Implementing Transaction Rollback
User request: "Wrap my database integration tests in transactions with automatic rollback to ensure a clean state after each test."
The skill will:
- Generate code that utilizes database transaction management features to wrap test functions.
- Implement automatic rollback mechanisms to revert any changes made during the test execution.
Best Practices
- Data Realism: Utilize Faker or similar libraries to generate realistic test data that accurately reflects production data.
- Transaction Isolation: Ensure proper transaction isolation levels to prevent interference between concurrent tests.
- Schema Validation: Regularly validate database schema against expected structures to identify migration issues early.
Integration
This skill seamlessly integrates with other code generation and execution tools within Claude Code. It can be used in conjunction with file management and code editing skills to create, modify, and execute database testing scripts.
快速安装
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus/tree/main/database-test-manager在 Claude Code 中复制并粘贴此命令以安装该技能
GitHub 仓库
相关推荐技能
llamaguard
其他LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
langchain
元LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。
