fuzzing-apis
关于
The fuzzing-apis skill enables Claude to automatically perform security fuzz testing on REST APIs using malformed inputs and boundary values. It helps identify vulnerabilities like SQL injection, XSS, and input validation failures through comprehensive test suites. Developers can invoke this skill with the `/fuzz-api` command when they need vulnerability scanning or security analysis of their APIs.
技能文档
Overview
This skill allows Claude to conduct automated fuzz testing on REST APIs. It identifies potential security flaws and robustness issues by injecting various malformed inputs, boundary values, and random data.
How It Works
- Input Generation: The skill generates a diverse set of test inputs, including malformed data, boundary values, and random payloads.
- API Interaction: It sends these inputs to the specified API endpoints.
- Result Analysis: It analyzes the API's responses and behavior to identify vulnerabilities, crashes, and unexpected results, such as SQL injection errors or XSS vulnerabilities.
When to Use This Skill
This skill activates when you need to:
- Identify potential security vulnerabilities in an API.
- Test the robustness of an API against unexpected inputs.
- Ensure proper input validation is implemented in an API.
Examples
Example 1: Discovering SQL Injection Vulnerability
User request: "Fuzz test the /users endpoint for SQL injection vulnerabilities."
The skill will:
- Generate SQL injection payloads.
- Send these payloads to the /users endpoint.
- Analyze the API's responses for SQL errors or unexpected behavior indicating a SQL injection vulnerability.
Example 2: Testing Input Validation
User request: "Fuzz test the /products endpoint to check for input validation issues with price and quantity parameters."
The skill will:
- Generate malformed inputs for price and quantity (e.g., negative values, extremely large numbers, non-numeric characters).
- Send these inputs to the /products endpoint.
- Analyze the API's responses for errors or unexpected behavior, indicating input validation failures.
Best Practices
- Specificity: Be specific about the API endpoint or parameters you want to fuzz.
- Context: Provide context about the expected behavior of the API.
- Iteration: Run multiple fuzzing sessions with different input sets for thorough testing.
Integration
This skill can be used in conjunction with other security analysis tools to provide a more comprehensive assessment of an API's security posture. It can also be integrated into a CI/CD pipeline to automate security testing.
快速安装
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus/tree/main/api-fuzzer在 Claude Code 中复制并粘贴此命令以安装该技能
GitHub 仓库
相关推荐技能
llamaguard
其他LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
langchain
元LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。
