validating-ai-ethics-and-fairness
关于
This skill enables Claude to validate AI/ML models and datasets for ethical concerns and biases using the ai-ethics-validator plugin. It triggers on requests for ethics reviews, fairness assessments, or bias detection, providing reports and mitigation recommendations. Developers should use it to ensure responsible AI development when terms like "bias detection" or "responsible AI" are mentioned.
快速安装
Claude Code
推荐/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus-skillsgit clone https://github.com/jeremylongshore/claude-code-plugins-plus-skills.git ~/.claude/skills/validating-ai-ethics-and-fairness在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
Overview
This skill empowers Claude to automatically assess and improve the ethical considerations and fairness of AI and machine learning projects. It leverages the ai-ethics-validator plugin to identify potential biases, evaluate fairness metrics, and suggest mitigation strategies, promoting responsible AI development.
How It Works
- Analysis Initiation: The skill is triggered by user requests related to AI ethics, fairness, or bias detection.
- Ethical Validation: The ai-ethics-validator plugin analyzes the provided AI model, dataset, or code for potential ethical concerns and biases.
- Report Generation: The plugin generates a detailed report outlining identified issues, fairness metrics, and recommended mitigation strategies.
When to Use This Skill
This skill activates when you need to:
- Evaluate the fairness of an AI model across different demographic groups.
- Detect and mitigate bias in a training dataset.
- Assess the ethical implications of an AI-powered application.
Examples
Example 1: Fairness Evaluation
User request: "Evaluate the fairness of this loan application model."
The skill will:
- Invoke the ai-ethics-validator plugin to analyze the model's predictions across different demographic groups.
- Generate a report highlighting any disparities in approval rates or loan terms.
Example 2: Bias Detection
User request: "Detect bias in this image recognition dataset."
The skill will:
- Utilize the ai-ethics-validator plugin to analyze the dataset for representation imbalances across different categories.
- Generate a report identifying potential biases and suggesting data augmentation or re-sampling strategies.
Best Practices
- Data Integrity: Ensure the input data is accurate, representative, and properly preprocessed.
- Metric Selection: Choose appropriate fairness metrics based on the specific application and potential impact.
- Transparency: Document the ethical considerations and mitigation strategies implemented throughout the AI development process.
Integration
This skill can be integrated with other plugins for data analysis, model training, and deployment to ensure ethical considerations are incorporated throughout the entire AI lifecycle. For example, it can be combined with a data visualization plugin to explore the distribution of data across different demographic groups.
GitHub 仓库
相关推荐技能
content-collections
元Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
llamaguard
其他LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。
