running-clustering-algorithms
关于
This skill enables Claude to execute clustering algorithms like K-means, DBSCAN, and hierarchical clustering on user-provided datasets. It's triggered by explicit requests for cluster analysis, grouping data points, or identifying data structure. The skill handles the full workflow including data validation, running the algorithms, calculating performance metrics, and saving the results.
快速安装
Claude Code
推荐/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus-skillsgit clone https://github.com/jeremylongshore/claude-code-plugins-plus-skills.git ~/.claude/skills/running-clustering-algorithms在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
Overview
This skill empowers Claude to perform clustering analysis on provided datasets. It allows for automated execution of various clustering algorithms, providing insights into data groupings and structures.
How It Works
- Analyzing the Context: Claude analyzes the user's request to determine the dataset, desired clustering algorithm (if specified), and any specific requirements.
- Generating Code: Claude generates Python code using appropriate ML libraries (e.g., scikit-learn) to perform the clustering task, including data loading, preprocessing, algorithm execution, and result visualization.
- Executing Clustering: The generated code is executed, and the clustering algorithm is applied to the dataset.
- Providing Results: Claude presents the results, including cluster assignments, performance metrics (e.g., silhouette score, Davies-Bouldin index), and visualizations (e.g., scatter plots with cluster labels).
When to Use This Skill
This skill activates when you need to:
- Identify distinct groups within a dataset.
- Perform a cluster analysis to understand data structure.
- Run K-means, DBSCAN, or hierarchical clustering on a given dataset.
Examples
Example 1: Customer Segmentation
User request: "Run clustering on this customer data to identify customer segments. The data is in customer_data.csv."
The skill will:
- Load the customer_data.csv dataset.
- Perform K-means clustering to identify distinct customer segments based on their attributes.
- Provide a visualization of the customer segments and their characteristics.
Example 2: Anomaly Detection
User request: "Perform DBSCAN clustering on this network traffic data to identify anomalies. The data is available at network_traffic.txt."
The skill will:
- Load the network_traffic.txt dataset.
- Perform DBSCAN clustering to identify outliers representing anomalous network traffic.
- Report the identified anomalies and their characteristics.
Best Practices
- Data Preprocessing: Always preprocess the data (e.g., scaling, normalization) before applying clustering algorithms to improve performance and accuracy.
- Algorithm Selection: Choose the appropriate clustering algorithm based on the data characteristics and the desired outcome. K-means is suitable for spherical clusters, while DBSCAN is better for non-spherical clusters and anomaly detection.
- Parameter Tuning: Tune the parameters of the clustering algorithm (e.g., number of clusters in K-means, epsilon and min_samples in DBSCAN) to optimize the results.
Integration
This skill can be integrated with data loading skills to retrieve datasets from various sources. It can also be combined with visualization skills to generate insightful visualizations of the clustering results.
GitHub 仓库
相关推荐技能
content-collections
元Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
llamaguard
其他LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。
