MCP HubMCP Hub
返回技能列表

managing-snapshot-tests

jeremylongshore
更新于 Today
35 次查看
409
51
409
在 GitHub 上查看
aitestingdesign

关于

This skill helps developers manage snapshot tests by analyzing failures and selectively updating snapshots to distinguish intentional changes from regressions. It's triggered when users mention snapshot tests, failures, or request updates using commands like "/snapshot-manager". The skill supports popular testing frameworks including Jest, Vitest, Playwright, and Storybook.

技能文档

Overview

This skill empowers Claude to efficiently manage snapshot tests by analyzing differences, selectively updating snapshots based on intentional changes, and identifying potential regressions. It provides a streamlined approach to maintain snapshot test suites across various JavaScript testing frameworks.

How It Works

  1. Analyzing Failures: Reviews failed snapshot diffs, highlighting intentional and unintentional changes with side-by-side comparisons.
  2. Selective Updating: Updates specific snapshots that reflect intentional UI or code changes, while preserving snapshots that have caught regressions.
  3. Batch Processing: Allows for batch updating of related snapshots to streamline the update process.

When to Use This Skill

This skill activates when you need to:

  • Analyze snapshot test failures after code changes.
  • Update snapshot tests to reflect intentional UI changes.
  • Identify and preserve snapshots that are catching regressions.

Examples

Example 1: Updating Snapshots After UI Changes

User request: "I've made some UI changes and now my snapshot tests are failing. Can you update the snapshots?"

The skill will:

  1. Analyze the snapshot failures, identifying the diffs caused by the UI changes.
  2. Update the relevant snapshot files to reflect the new UI.

Example 2: Investigating Unexpected Snapshot Changes

User request: "My snapshot tests are failing, but I don't expect any UI changes. Can you help me figure out what's going on?"

The skill will:

  1. Analyze the snapshot failures, highlighting the unexpected diffs.
  2. Present the diffs to the user for review, indicating potential regressions.

Best Practices

  • Clear Communication: Clearly state the intention behind updating or analyzing snapshots.
  • Framework Awareness: Specify the testing framework (Jest, Vitest, etc.) if known for more accurate analysis.
  • Selective Updates: Avoid blindly updating all snapshots. Focus on intentional changes and investigate unexpected diffs.

Integration

This skill works independently but can be used in conjunction with other code analysis and testing tools to provide a comprehensive testing workflow.

快速安装

/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus/tree/main/snapshot-test-manager

在 Claude Code 中复制并粘贴此命令以安装该技能

GitHub 仓库

jeremylongshore/claude-code-plugins-plus
路径: backups/skills-migration-20251108-070147/plugins/testing/snapshot-test-manager/skills/snapshot-test-manager
aiautomationclaude-codedevopsmarketplacemcp

相关推荐技能

llamaguard

其他

LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能

langchain

LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。

查看技能