processing-computer-vision-tasks
关于
This skill enables Claude to analyze images using computer vision for tasks like object detection, classification, and segmentation. Use it when a user provides an image and requests insights, identification, or processing. It triggers on terms like "analyze image" or "object detection" and leverages specific tools to automate these workflows.
快速安装
Claude Code
推荐/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus-skillsgit clone https://github.com/jeremylongshore/claude-code-plugins-plus-skills.git ~/.claude/skills/processing-computer-vision-tasks在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
Overview
This skill empowers Claude to leverage the computer-vision-processor plugin to analyze images, detect objects, and extract meaningful information. It automates computer vision workflows, optimizes performance, and provides detailed insights based on image content.
How It Works
- Analyzing the Request: Claude identifies the need for computer vision processing based on the user's request and trigger terms.
- Generating Code: Claude generates the appropriate Python code to interact with the computer-vision-processor plugin, specifying the desired analysis type (e.g., object detection, image classification).
- Executing the Task: The generated code is executed using the
/process-visioncommand, which processes the image and returns the results.
When to Use This Skill
This skill activates when you need to:
- Analyze an image for specific objects or features.
- Classify an image into predefined categories.
- Segment an image to identify different regions or objects.
Examples
Example 1: Object Detection
User request: "Analyze this image and identify all the cars and pedestrians."
The skill will:
- Generate code to perform object detection on the provided image using the computer-vision-processor plugin.
- Return a list of bounding boxes and labels for each detected car and pedestrian.
Example 2: Image Classification
User request: "Classify this image. Is it a cat or a dog?"
The skill will:
- Generate code to perform image classification on the provided image using the computer-vision-processor plugin.
- Return the classification result (e.g., "cat" or "dog") along with a confidence score.
Best Practices
- Data Validation: Always validate the input image to ensure it's in a supported format and resolution.
- Error Handling: Implement robust error handling to gracefully manage potential issues during image processing.
- Performance Optimization: Choose the appropriate computer vision techniques and parameters to optimize performance for the specific task.
Integration
This skill utilizes the /process-vision command provided by the computer-vision-processor plugin. It can be integrated with other skills to further process the results of the computer vision analysis, such as generating reports or triggering actions based on detected objects.
GitHub 仓库
相关推荐技能
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
llamaguard
其他LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。
langchain
元LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。
