MCP HubMCP Hub
返回技能列表

finding-security-misconfigurations

jeremylongshore
更新于 Yesterday
7 次查看
409
51
409
在 GitHub 上查看
ai

关于

This skill enables Claude to identify security misconfigurations in infrastructure-as-code, application configs, and system settings using a dedicated plugin. Use it when you need to audit configurations, check for vulnerabilities, or perform security assessments. It helps pinpoint common security weaknesses and compliance issues for remediation.

技能文档

Overview

This skill empowers Claude to proactively detect security misconfigurations before they can be exploited. By utilizing the security-misconfiguration-finder plugin, Claude can analyze various configuration files and system settings to identify potential vulnerabilities and ensure compliance with security best practices. This allows for early detection and remediation of security weaknesses.

How It Works

  1. Receive User Request: Claude receives a user request related to security misconfigurations.
  2. Activate Plugin: Claude activates the security-misconfiguration-finder plugin.
  3. Analyze Configuration: The plugin analyzes the specified configuration files or system settings.
  4. Identify Misconfigurations: The plugin identifies potential security misconfigurations based on predefined rules and best practices.
  5. Present Findings: Claude presents the identified misconfigurations to the user, along with recommendations for remediation.

When to Use This Skill

This skill activates when you need to:

  • Identify potential security vulnerabilities in infrastructure-as-code deployments (e.g., Terraform, CloudFormation).
  • Audit application configurations for security misconfigurations (e.g., insecure defaults, missing security headers).
  • Check system settings for compliance with security best practices (e.g., password policies, access controls).

Examples

Example 1: Security Audit of a Terraform Configuration

User request: "Find security misconfigurations in my Terraform configuration file main.tf"

The skill will:

  1. Activate the security-misconfiguration-finder plugin.
  2. Analyze the main.tf file for security vulnerabilities.
  3. Report any identified misconfigurations, such as publicly accessible resources or insecure network configurations.

Example 2: Checking Application Configuration for Security Issues

User request: "Check my application's configuration file application.yml for security vulnerabilities."

The skill will:

  1. Activate the security-misconfiguration-finder plugin.
  2. Analyze the application.yml file.
  3. Identify issues like exposed API keys or disabled security features.

Best Practices

  • Specify Target: Always specify the target configuration file or system settings to be analyzed.
  • Review Findings: Carefully review the identified misconfigurations and prioritize remediation based on risk.
  • Regular Audits: Schedule regular security audits to proactively identify and address potential vulnerabilities.

Integration

This skill can be integrated with other plugins, such as infrastructure-as-code deployment tools, to automatically check for security misconfigurations before deployment. It can also be used in conjunction with reporting plugins to generate security audit reports.

快速安装

/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus/tree/main/security-misconfiguration-finder

在 Claude Code 中复制并粘贴此命令以安装该技能

GitHub 仓库

jeremylongshore/claude-code-plugins-plus
路径: backups/skills-migration-20251108-070147/plugins/security/security-misconfiguration-finder/skills/security-misconfiguration-finder
aiautomationclaude-codedevopsmarketplacemcp

相关推荐技能

llamaguard

其他

LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能

langchain

LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。

查看技能