MCP HubMCP Hub
返回技能列表

generating-test-reports

jeremylongshore
更新于 Today
61 次查看
409
51
409
在 GitHub 上查看
pdfaitestingdata

关于

This skill generates comprehensive test reports by aggregating results from multiple testing frameworks and calculating key metrics like coverage and pass rates. It provides trend analysis and outputs reports in developer and stakeholder-friendly formats including HTML, PDF, and JSON. Use it when you need to create test reports, analyze failures, or compare historical test data.

技能文档

Overview

This skill empowers Claude to create detailed test reports, providing insights into code coverage, test performance trends, and failure analysis. It supports multiple output formats for easy sharing and analysis.

How It Works

  1. Aggregating Results: Collects test results from various test frameworks used in the project.
  2. Calculating Metrics: Computes coverage metrics, pass rates, test duration, and identifies trends.
  3. Generating Report: Produces comprehensive reports in HTML, PDF, or JSON format based on the user's preference.

When to Use This Skill

This skill activates when you need to:

  • Generate a test report after a test run.
  • Analyze code coverage to identify areas needing more testing.
  • Identify trends in test performance over time.

Examples

Example 1: Generating an HTML Test Report

User request: "Generate an HTML test report showing code coverage and failure analysis."

The skill will:

  1. Aggregate test results from all available frameworks.
  2. Calculate code coverage and identify failing tests.
  3. Generate an HTML report summarizing the findings.

Example 2: Comparing Test Results Over Time

User request: "Create a report comparing the test results from the last two CI/CD runs."

The skill will:

  1. Retrieve test results from the two most recent CI/CD runs.
  2. Compare key metrics like pass rate and duration.
  3. Generate a report highlighting any regressions or improvements.

Best Practices

  • Clarity: Specify the desired output format (HTML, PDF, JSON) for the report.
  • Scope: Define the scope of the report (e.g., specific test suite, time period).
  • Context: Provide context about the project and testing environment to improve accuracy.

Integration

This skill can integrate with CI/CD pipelines to automatically generate and share test reports after each build. It also works well with other analysis plugins to provide more comprehensive insights.

快速安装

/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus/tree/main/test-report-generator

在 Claude Code 中复制并粘贴此命令以安装该技能

GitHub 仓库

jeremylongshore/claude-code-plugins-plus
路径: backups/skills-migration-20251108-070147/plugins/testing/test-report-generator/skills/test-report-generator
aiautomationclaude-codedevopsmarketplacemcp

相关推荐技能

llamaguard

其他

LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能

langchain

LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。

查看技能